Background: In Norway, we have offered testing of PMS2 since 2006, and have a large national cohort of carriers. The aim of this study was to describe all PMS2 variants identified, and to describe frequency, spectrum and penetrance of cancers in carriers of class 4/5 variants.
Methods: All detected PMS2 variants were collected from the diagnostic laboratories and reclassified according to ACMG criteria and gene specific guidelines.
The cancer syndrome polymerase proofreading-associated polyposis results from germline mutations in the POLE and POLD1 genes. Mutations in the exonuclease domain of these genes are associated with hyper- and ultra-mutated tumors with a predominance of base substitutions resulting from faulty proofreading during DNA replication. When a new variant is identified by gene testing of POLE and POLD1, it is important to verify whether the variant is associated with PPAP or not, to guide genetic counseling of mutation carriers.
View Article and Find Full Text PDFBackground: Detection of copy number variation (CNV) in genes associated with disease is important in genetic diagnostics, and next generation sequencing (NGS) technology provides data that can be used for CNV detection. However, CNV detection based on NGS data is in general not often used in diagnostic labs as the data analysis is challenging, especially with data from targeted gene panels. Wet lab methods like MLPA (MRC Holland) are widely used, but are expensive, time consuming and have gene-specific limitations.
View Article and Find Full Text PDFBackground: Lynch-like syndrome (LLS) represents around 50% of the patients fulfilling the Amsterdam Criteria II/revised Bethesda Guidelines, characterized by a strong family history of Lynch Syndrome (LS) associated cancer, where a causative variant was not identified during genetic testing for LS.
Methods: Using data extracted from a larger gene panel, we have analyzed next-generation sequencing data from 22 mismatch repair (MMR) genes (MSH3, PMS1, MLH3, EXO1, POLD1, POLD3 RFC1, RFC2, RFC3, RFC4, RFC5, PCNA, LIG1, RPA1, RPA2, RPA3, POLD2, POLD4, MLH1, MSH2, MSH6, and PMS2) in 274 LLS patients. Detected variants were annotated and filtered using ANNOVAR and FILTUS software.
The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC.
View Article and Find Full Text PDF