The CEL-HYB1 hybrid allele of the carboxyl ester lipase (CEL) gene and its pseudogene (CELP) has been associated with chronic pancreatitis (CP). Recent work indicated that amino acid positions 488 and 548 in CEL-HYB1 determined pathogenicity. Haplotype Thr488-Ile548 was associated with CP while haplotypes Thr488-Thr548 and Ile488-Thr548 were benign.
View Article and Find Full Text PDFBackground: Genetic alterations in digestive enzymes have been associated with chronic pancreatitis (CP). Recently, chymotrypsin like elastase 3B (CELA3B) emerged as a novel risk gene. Thus, we evaluated CELA3B in two European cohorts with CP.
View Article and Find Full Text PDFBackground: Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions.
Methods: We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants.
Background: The calcium sensing receptor (CASR) is a G protein-coupled receptor that is responsible for assessing extracellular Ca levels and thus plays a crucial role in calcium homeostasis. Hypercalcemia is a metabolic risk factor for pancreatitis and rare CASR variants have been described in patients with chronic pancreatitis. At the carboxy-terminal tail of CASR, there is a cluster of three common polymorphisms, p.
View Article and Find Full Text PDFBackground: /Objectives: A recent Genome-wide Association Study (GWAS) in alcoholic chronic pancreatitis (ACP) identified a novel association with the CTRB1-CTRB2 (chymotrypsinogen B1, B2) locus, linked to a 16.6 kb inversion that was confirmed in non-alcoholic chronic pancreatitis (NACP). Moreover, recent findings on the function of CTRB1 and CTRB2 suggest a protective role in pancreatitis development.
View Article and Find Full Text PDFIntestinal transport and sensing processes and their interconnection to metabolism are relevant to pathologies such as malabsorption syndromes, inflammatory diseases, obesity and type 2 diabetes. Constituting a highly selective barrier, intestinal epithelial cells absorb, metabolize, and release nutrients into the circulation, hence serving as gatekeeper of nutrient availability and metabolic health for the whole organism. Next to nutrient transport and sensing functions, intestinal transporters including peptide transporter 1 (PEPT1) are involved in the absorption of drugs and prodrugs, including certain inhibitors of angiotensin-converting enzyme, protease inhibitors, antivirals, and peptidomimetics like β-lactam antibiotics.
View Article and Find Full Text PDFBackground & Aims: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca-selective ion channel, in an international cohort of patients and in mice.
Methods: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP.
Objectives: Premature activation of the digestive protease trypsin within the pancreatic parenchyma is a critical factor in the pathogenesis of pancreatitis. Alterations in genes that affect intrapancreatic trypsin activity are associated with chronic pancreatitis (CP). Recently, carboxyl ester lipase emerged as a trypsin-independent risk gene.
View Article and Find Full Text PDFIntestinal fructose uptake is mainly mediated by glucose transporter 5 (GLUT5/SLC2A5). Its closest relative, GLUT7, is also expressed in the intestine but does not transport fructose. For rat Glut5, a change of glutamine to glutamic acid at codon 166 (p.
View Article and Find Full Text PDF