Publications by authors named "Maren E Buck"

We report an approach for the photomediated post-fabrication modification of reactive, azlactone-containing gels using light-initiated deprotection of amines caged with 2-(nitrophenyl)propyloxycarbonyl (NPPOC). Photomediated modification of these gels can be used to generate a gradient in chemical functionality. When functionalized with tertiary amine groups, these gradient gels exhibit rapid and reversible shape deformations in response to changes in pH.

View Article and Find Full Text PDF

Conjugation of proteins to drug-loaded polymeric structures is an attractive strategy for facilitating target-specific drug delivery for a variety of clinical needs. Polymers currently available for conjugation to proteins generally have limited chemical versatility for subsequent drug loading. Many polymers that do have chemical functionality useful for drug loading are often insoluble in water, making it difficult to synthesize functional protein-polymer conjugates for targeted drug delivery.

View Article and Find Full Text PDF

Coiled-coil domains can direct the assembly of protein block copolymers into physically cross-linked, viscoelastic hydrogels. Here, we describe the use of fluorescence recovery after photobleaching (FRAP) to probe chain mobility in reversible hydrogels assembled from engineered proteins bearing terminal coiled-coil domains. We show that chain mobility can be related to the underlying dynamics of the coiled-coil domains by application of a three-state "hopping" model of chain migration.

View Article and Find Full Text PDF

A set of recombinant artificial proteins that can be cross-linked, by either covalent bonds or association of helical domains or both, is described. The designed proteins can be used to construct molecular networks in which the mechanism of crosslinking determines the time-dependent responses to mechanical deformation.

View Article and Find Full Text PDF

Virulence in Staphylococcus aureus is strongly and positively correlated with local cell density. Here we present an effective approach to modulate this group behaviour using multivalent peptide-polymer conjugates. Our results show that by attaching multiple AIP-4' units to macromolecular scaffolds, the agr QS response in S.

View Article and Find Full Text PDF

We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the 'reactive' layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA). Post-fabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays.

View Article and Find Full Text PDF

Polymers functionalized with azlactone (or oxazolone) functionality have become increasingly useful for the rapid and modular design of functional materials. Because azlactones can react via ring-opening reactions with a variety of different nucleophilic species (e.g.

View Article and Find Full Text PDF

We report a method for modulating the physicochemical properties of surfaces that is based on the reactive layer-by-layer fabrication of covalently crosslinked thin films using azlactone-functionalized copolymers. We demonstrate that copolymers containing different molar ratios of methylmethacrylate (MMA) and 2-vinyl-4,4-dimethylazlactone (VDMA) can be alternately deposited with poly(ethyleneimine) to assemble covalently crosslinked thin films. Characterization using ellipsometry demonstrates that, in general, film growth and thickness decrease as the content of reactive, azlactone functionality in the copolymer used to assemble the film decreases.

View Article and Find Full Text PDF

We report an approach to the fabrication and selective functionalization of amine-reactive polymer multilayers on the surfaces of 3-D polyurethane-based microwell cell culture arrays. "Reactive" layer-by-layer assembly of multilayers using branched polyethyleneimine (BPEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA) yielded film-coated microwell arrays that could be chemically functionalized postfabrication by treatment with different amine-functionalized macromolecules or small molecule primary amines. Treatment of film-coated arrays with the small molecule amine d-glucamine resulted in microwell surfaces that resisted the adhesion and proliferation of mammalian fibroblast cells in vitro.

View Article and Find Full Text PDF

We report on the fabrication of covalently crosslinked and amine-reactive hollow microcapsules using 'reactive' layer-by-layer assembly to deposit thin polymer films on sacrificial microparticle templates. Our approach is based on the alternating deposition of layers of a synthetic polyamine and a polymer containing reactive azlactone functionality. Multilayered films composed of branched poly(ethylene imine) (BPEI) and poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) were fabricated layer-by-layer on the surfaces of calcium carbonate and glass microparticle templates.

View Article and Find Full Text PDF

We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.

View Article and Find Full Text PDF

We report an approach to the fabrication of free-standing and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently cross-linked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These free-standing membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.

View Article and Find Full Text PDF

We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by the spontaneous adsorption of polymer from aqueous solution.

View Article and Find Full Text PDF

We report an approach to the functionalization of fibers and fiber-based materials that is based on the deposition of reactive azlactone-functionalized polymers and the "reactive" layer-by-layer assembly of azlactone-containing thin films. We demonstrate (i) that the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be used to modify the surfaces of a model protein-based fiber (horsehair) and cellulose-based materials (e.g.

View Article and Find Full Text PDF

Azlactone-functionalized polymers are used as reactive templates for the synthesis of a library of amine-functionalized polymers of interest in the context of DNA delivery and other applications.

View Article and Find Full Text PDF

Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) were used to characterize changes in nanoscale structure that occur when ultrathin polyelectrolyte multilayers (PEMs) are incubated in aqueous media. The PEMs investigated here were fabricated by the deposition of alternating layers of plasmid DNA and a hydrolytically degradable polyamine onto a precursor film composed of alternating layers of linear poly(ethylene imine) (LPEI) and sodium poly(styrene sulfonate) (SPS). Past studies of these materials in the context of gene delivery revealed transformations from a morphology that is smooth and uniform to one characterized by the formation of nanometer-scale particulate structures.

View Article and Find Full Text PDF

We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that: (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4'-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4'-dimethylazlactone).

View Article and Find Full Text PDF

We report an approach to the design of reactive polymer films that can be functionalized post-fabrication to either prevent or promote the attachment and growth of cells. Our approach is based on the reactive layer-by-layer assembly of covalently crosslinked thin films using a synthetic polyamine and a polymer containing reactive azlactone functionality. Our results demonstrate (i) that the residual azlactone functionality in these films can be exploited to immobilize amine-functionalized chemical motifs similar to those that promote or prevent cell and protein adhesion when assembled as self-assembled monolayers on gold-coated surfaces and (ii) that the immobilization of these motifs changes significantly the behaviors and interactions of cells with the surfaces of these polymer films.

View Article and Find Full Text PDF

Approaches to the fabrication of surfaces that combine methods for the topographic patterning of soft materials with opportunities for facile, post-fabrication chemical functionalization could contribute significantly to advances in biotechnology and a broad range of other areas. Here, we report methods that can be used to introduce well-defined nano- and microscale topographic features to thin films of reactive polymers containing azlactone functionality using nanoimprint lithography (NIL). We demonstrate that NIL can be used to imprint topographic patterns into thin films of poly(2-vinyl-4,4-dimethylazlactone) and a copolymer of methyl methacrylate and 2-vinyl-4,4-dimethylazlactone using silicon masters having patterns of grooves and ridges ranging in width from 400 nm to 2 microm, demonstrating the potential of this method to transfer patterns to films of these reactive polymers over a range of feature sizes and densities.

View Article and Find Full Text PDF

We report the design of an amphiphilic polyamine (polymer 1) based on poly(2-alkenyl azlactone) that strongly couples the formation of polyelectrolyte complexes at aqueous/liquid crystal (LC) interfaces to ordering transitions in the LC. We demonstrate that the addition of a strong anionic polyelectrolyte to aqueous solutions in contact with polymer 1-laden LC interfaces (prepared by Langmuir-Schaefer transfer of monolayers of polymer 1 onto micrometer-thick films of nematic LC) triggers ordering transitions in the LCs. We further demonstrate that changes in the ordering of the LCs (i) are driven by electrostatic interactions between the polyelectrolytes, (ii) involve multivalent interactions between the polyelectrolytes, and (iii) are triggered by reorganization of the hydrophobic side chains of amphiphilic polymer 1 upon formation of the interfacial complexes.

View Article and Find Full Text PDF