Flavonoids and hydroxycinnamic acids are the main responsible of the antioxidant activity of chamomile (Matricaria recutita L.). Traditional methods for the analysis of the phenolic content in vegetables often suffer from limitations such as being expensive, time-consuming, and complex.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive debilitating neurological disorder representing the most common neurodegenerative disease worldwide. Although the exact pathogenic mechanisms of AD remain unresolved, the presence of extracellular amyloid-β peptide 1-42 (Aβ) plaques in the parenchymal and cortical brain is considered one of the hallmarks of the disease. In this work, we investigated the Aβ fibrillogenesis timeline up to 48 h of incubation, providing morphological and chemo-structural characterization of the main assemblies formed during the aggregation process of Aβ, by atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS), respectively.
View Article and Find Full Text PDFAdvantages of biosensors based on surface enhanced Raman scattering (SERS) rely on improved sensitivity and specificity, and suited reproducibility in detecting a target molecule that is localized in close proximity to a SERS-active surface. Herein, a comprehensive study on the realization of a SERS biosensor designed for detecting miRNA-183, a miRNA biomarker that is specific for chronic obstructive pulmonary disease (COPD), is presented. The used strategy exploits a signal-off mechanism by means of a labelled molecular beacon (MB) as the oligonucleotide biorecognition element immobilized on a 2D SERS substrate, based on spot-on silver nanowires (AgNWs) and a multi-well low volume cell.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disorder, resulting in memory loss, cognitive decline, bodily function impairment, and finally death. The growing number of people suffering from AD increasingly urges the development of effective early diagnosis and monitoring techniques. Here, we review the most recent developments in the field of Raman-based techniques, which have shown a significant potential in identifying AD by detecting specific biomarkers in biological fluids, as well as in providing fundamental insights into key molecules involved in the disease progression or in the analysis of histological specimens of patients with AD.
View Article and Find Full Text PDFIon-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.
View Article and Find Full Text PDFThe use of SERS for real-world bioanalytical applications represents a concrete opportunity, which, however, is being largely delayed by the inadequacy of existing substrates used to collect SERS spectra. In particular, the main bottleneck is their poor usability, as in the case of unsupported noble metal colloidal nanoparticles or because of the need for complex or highly specialized fabrication procedures, especially in view of a large-scale commercial diffusion. In this work, we introduce a graphene paper-supported plasmonic substrate for biodetection as obtained by a simple and rapid aerosol deposition patterning of silver nanowires.
View Article and Find Full Text PDFEstablishing standardized methods for a consistent analysis of spectral data remains a largely underexplored aspect in surface-enhanced Raman spectroscopy (SERS), particularly applied to biological and biomedical research. Here we propose an effective machine learning classification of protein species with closely resembled spectral profiles by a mixed data processing based on principal component analysis (PCA) applied to multipeak fitting on SERS spectra. This strategy simultaneously assures a successful discrimination of proteins and a thorough characterization of the chemostructural differences among them, ultimately opening up new routes for SERS evolution toward sensing applications and diagnostics of interest in life sciences.
View Article and Find Full Text PDFSignificance: Alzheimer's disease (AD) is an irreversible and progressive disorder that damages brain cells and impairs the cognitive abilities of the affected. Developing a sensitive and cost-effective method to detect Alzheimer's biomarkers appears vital in both a diagnostic and therapeutic perspective.
Aim: Our goal is to develop a sensitive and reliable tool for detection of amyloid β (1-42) peptide (Aβ42), a major AD biomarker, using fiber-enhanced Raman spectroscopy (FERS).
Raman spectroscopy assisted by localized plasmon resonances generating effective hot spots at the gaps between intertwined silver nanowires is herein adopted to unravel characteristic molecular motifs on the surface of Aβ misfolded oligomers that are critical in driving intermolecular interactions in neurodegeneration.
View Article and Find Full Text PDFSurface functionalization is a key step in biosensing since it is the basis of an effective analyte recognition. Among all the bioreceptors, antibodies (Abs) play a key role thanks to their superior specificity, although the available immobilization strategies suffer from several drawbacks. When gold is the interacting surface, the recently introduced Photochemical Immobilization Technique (PIT) has been shown to be a quick, easy-to-use and very effective method to tether Abs oriented upright by means of thiols produced via tryptophan mediated disulphide bridge reduction.
View Article and Find Full Text PDFObjectives: Currently, the exact reasons why different α-synucleinopathies exhibit variable pathologies and phenotypes are still unknown. A potential explanation may be the existence of distinctive α-synuclein conformers or strains. Here, we intend to analyze the seeding activity of dementia with Lewy bodies (DLB) and Parkinson's disease (PD) brain-derived α-synuclein seeds by real-time quaking-induced conversion (RT-QuIC) and to investigate the structure and morphology of the α-synuclein aggregates generated by RT-QuIC.
View Article and Find Full Text PDFHighly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels.
View Article and Find Full Text PDFAn advanced optofluidic system for protein detection based on Raman signal amplification via dewetting and molecular gathering within temporary mesoscale assemblies is presented. The evaporation of a microliter volume of protein solution deposited in a circular microwell precisely follows an outward-receding geometry. Herein the combination of liquid withdrawal with intermolecular interactions induces the formation of self-assembled molecular domains at the solid-liquid interface.
View Article and Find Full Text PDFStrategies for protein detection via surface-enhanced Raman spectroscopy (SERS) currently exploit the formation of randomly generated hot spots at the interfaces of metal colloidal nanoparticles, which are clustered together by intrusive chemical or physical processes in the presence of the target biomolecule. We propose a different approach based on selective and quantitative gathering of protein molecules at regular hot spots generated on the corners of individual silver nanocubes in aqueous medium at physiological pH. Here, the protein, while keeping its native configuration, experiences an intense local E-field, which boosts SERS efficiency and detection sensitivity.
View Article and Find Full Text PDFHybrid graphene oxide (GO)/metal nanocomposites have been recently proposed as novel surface-enhanced Raman scattering (SERS) substrates. Despite an increasing interest in these systems, standardization in their fabrication process is still lacking but urgently required to support their use for real-life applications. In this work we investigate how the assembly of GO should be conducted to control adsorption geometry and optical properties at the interface with plasmonic nanostructures as monolayer assemblies of silver nanocubes, by tuning main experimental parameters including GO concentration and self-assembly time.
View Article and Find Full Text PDFSERS detection of proteins is typically performed by using labeling agents with stable and high Raman scattering cross sections. This is a valuable approach for trace detection and quantification of a target protein but is unsuitable for inspecting its inherent structural and functional properties. On the other hand, direct SERS of proteins has been mainly devoted to the study of short peptides and aminoacid sequences or of prosthetic groups with intense Raman signals, which is of scarce interest for a thorough characterization of most proteins.
View Article and Find Full Text PDFThe thermal transitions of fibrillar collagen are investigated with second-harmonic generation polarization anisotropy microscopy. Second-harmonic generation images and polarization anisotropy profiles of corneal stroma heated in the 35-80°C range are analyzed by means of a theoretical model that is suitable to probe principal intramolecular and interfibrillar parameters of immediate physiological interest. Our results depict the tissue modification with temperature as the interplay of three destructuration stages at different hierarchical levels of collagen assembly including its tertiary structure and interfibrillar alignment, thus supporting and extending previous findings.
View Article and Find Full Text PDFWe report new advancements in the biomedical exploitation of plasmonic nanoparticles as an effective platform for the photothermal repair of biological tissue. Chitosan films are loaded with gold nanorods with intense optical absorption in the "therapeutic window" of deepest light penetration through the body, and then activated by near infrared laser excitation to give adhesion with adjacent connective tissues. The adhesion consists of 0.
View Article and Find Full Text PDFIn-situ monitoring of domain reversal in congruent lithium niobate by a digital holographic technique is described. While the ferroelectric polarization is reversed by electric field poling, the two-dimensional distribution of the phase shift, due mainly to the linear electro-optic and piezoelectric effects, is measured and visualized. Digital holography is used to reconstruct both amplitude and phase of the wavefield transmitted by the sample to reveal the phase shift induced by adjacent reversed domains during the poling.
View Article and Find Full Text PDF