Publications by authors named "Marek Zakrzewski"

The crystal structures of the analgesic compounds anhydrous naloxone and naltrexone hydrochloride were determined ab initio from high resolution laboratory X-ray powder diffraction data. Both compounds crystallize in the orthorhombic space group P2(1)2(1)2(1) with lattice parameters of a = 14.6588(10) A, b = 17.

View Article and Find Full Text PDF

Bupivacaine belongs to a family of 1-alkyl-2',6'-pipecoloxylidides, which has shown promise as reversible action potential blockers that can introduce prolonged local anesthetic effects. The crystal structure of the free-base form of bupivacaine has been determined directly from powder X-ray diffraction data using the Genetic Algorithm technique for structure solution, followed by Rietveld refinement. This work further emphasizes the scope and utility of ab initio structure solution directly from powder X-ray diffraction data for tackling structural problems within the biomedical field, leading to opportunities for the investigation of structure-property relationships.

View Article and Find Full Text PDF

2-[[4-(4-Fluorophenoxy)phenyl]-methylene]-hydrazinecarboxamide, a member of the semicarbazone family which has shown potential therapeutic use as anticonvulsants, has been found to exist in two polymorphic forms denoted A and B. In addition to reporting aspects of the physical characterization of both forms, the crystal structure of polymorph A has been determined directly from powder X-ray diffraction data using the Genetic Algorithm technique for structure solution, followed by Rietveld refinement. This structure is compared with that of polymorph B, which was determined previously from single crystal X-ray diffraction data.

View Article and Find Full Text PDF

Purpose: The object of this investigation was to demonstrate the utility of X-ray powder diffractometry (XRD) to study the kinetics of a complex pharmaceutical solid-state reaction wherein the reactant, product and intermediate phases were all simultaneously quantified.

Methods: Aminophylline monohydrate (I) decomposed to anhydrous theophylline (III) either directly or through an intermediate (anhydrous aminophylline, II). The reaction kinetics were studied isothermally at several temperatures ranging from 65 to 100 degrees C.

View Article and Find Full Text PDF