A study was conducted to further develop our understanding of antimony (Sb) uptake in plants. Unlike other metal(loid)s, such as silicon (Si), the mechanisms of Sb uptake are not well understood. However, SbIII is thought to enter the cell via aquaglyceroporins.
View Article and Find Full Text PDFImproving the extent of adaptation and the choice of the most tolerant cultivar is the first step to mitigating the adverse effects of limited water, especially in susceptible plants such as strawberries. To address this issue, two commercial strawberry cultivars (Camarosa and Gaviota) were compared when irrigated to match 100, 75, 50, and 25% field capacity (FC) to simulate the control, slight, moderate, and severe drought stress conditions, respectively. Drought stress induced the reduction of total chlorophyll, carotenoid, relative water content, and phenolic content significantly, whereas the activity of antioxidant enzymes, electrolyte leakage, osmolyte accumulation, and oxidative markers upsurged progressively in drought severity-dependent behavior.
View Article and Find Full Text PDFSilicon enhances photosynthetic efficiency, biomass, and lignification of root structures possibly limiting antimony translocation and mitigating phytotoxicity in giant reed plants. Antimony (Sb) is a non-essential metalloid causing toxic effects in plants. Silicon has been reported to impart tolerance against biotic and abiotic stress in plants.
View Article and Find Full Text PDFArsenic (As) and cadmium (Cd) belong to the group of major pollutants extremely toxic to plants. Metal hyperaccumulating plants play an important role in phytoextraction of heavy metals. Silicon (Si) plays an important role in the amelioration of heavy metal stress through physio-biochemical mechanisms, which remain poorly understood in hyperaccumulators.
View Article and Find Full Text PDFNowadays, one of the biggest challenges of plant physiology is to find out the ways how to mitigate negative impacts of abiotic stress on plants. It is the pollution of groundwater or soil by various metals and metalloids that significantly affects the quality of life. Both arsenic (As) and silicon (Si) are metalloids - while the first one is toxic in general, the latter one is considered as beneficial for plants suffering from various kinds of stresses.
View Article and Find Full Text PDFIn the last decades, the concentration of atmospheric CO and the average temperature have been increasing, and this trend is expected to become more severe in the near future. Additionally, environmental stresses including drought, salinity, UV-radiation, heavy metals, and toxic elements exposure represent a threat for ecosystems and agriculture. Climate and environmental changes negatively affect plant growth, biomass and yield production, and also enhance plant susceptibility to pests and diseases.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2021
Nickel (Ni) is involved in several physiological processes in plants but its excess in environment has many phytotoxic effects. Silicon (Si), an element required for optimal plant performance, has been shown to have beneficial effects for plants coping with various types of stresses. Here we studied the alleviative potential of Si (2.
View Article and Find Full Text PDFFast-growing plant, giant reed (Arundo donax L.) has been gaining a lot of popularity in the phytoremediation of metal-polluted soils. However, information regarding the physiological background of tolerance and accumulation capacity of A.
View Article and Find Full Text PDFTo evaluate the multiplicity of reactions to toxic metalloid arsenic (As) with specific emphasis on the role of plant peroxidases, a model plant Nicotiana benthamiana was cultivated in in vitro conditions at various doses of As (applied as As up to 80 μM). After 28-day cultivation, several physiological characteristics such as plant growth, photosynthetic pigment concentration, As concentration, peroxidase (POX) expression levels, and POX activity were evaluated. A newly sequenced gene for POX has been identified, that belongs to the Class III plant extracellular peroxidases, and its relationship to the genus Solanum as the most relative species has been confirmed.
View Article and Find Full Text PDFAluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients.
View Article and Find Full Text PDFAlthough beneficial metalloid silicon (Si) has been shown to alleviate the toxicity of various heavy metals, there is a lack of knowledge about the role of Si in possible alleviation of phytotoxicity caused by excess of essential nickel (Ni). In the present study we investigated the growth and biomass production, reactive oxygen species (ROS) formation and activities of selected antioxidants, as well as combined effect of Ni and Si on the integrity of cell membranes and electrolyte leakage in young maize roots treated for 24, 48 and 72 h with excess of Ni and/or Si. By histochemical methods we also visualized Ni distribution in root tissues and compared the uptake of Ni and Si with the development of root apoplasmic barriers.
View Article and Find Full Text PDFExogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g.
View Article and Find Full Text PDFAt the dawn of the industrial revolution, the exorbitant use of heavy metals and toxic elements by mankind unfurls a powerful and complex web of hazard all around the world that significantly contributed to unprecedented trends in environmental degradation. Plants as sessile organisms, that cannot escape from the stress directly, have adapted to this environment via concurrent configurations of several traits. Among them the anatomy has been identified as much more advanced field of research that brought the explosion of interest among the expertise and its prodigious importance in stress physiology is unavoidable.
View Article and Find Full Text PDFToxicity of aluminum (Al) is a serious problem for agricultural plants, especially due to excessive soil acidification caused by continuous intensive agriculture and modified environmental conditions related with global climate change. Decreased root elongation and shoot growth, reduced biomass production, nutrient imbalance and altered physiological and metabolic processes are responsible for lower yield and crop quality and therefore, decreased variability and productivity of the land. Recently, biochar is gaining popularity for ameliorating metal toxicity in soils.
View Article and Find Full Text PDFSilicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.
View Article and Find Full Text PDFBackground And Aims: Cell walls of the peri-endodermis, a layer adjacent to the endodermis in alpine pennycress (Noccaea caerulescens) roots, form C-shaped peri-endodermal thickenings (PETs). Despite its specific position close to the endodermis, the assumed similarity of PETs to phi thickenings in many other species, and the fact that N. caerulescens is a well-studied heavy-metal-hyperaccumulating plant, the PET as a root trait is still not understood.
View Article and Find Full Text PDFSilicon (Si) is not considered an essential element, however, its tissue concentration can exceed that of many essential elements in several evolutionary distant plant species. Roots take up Si using Si transporters and then translocate it to aboveground organs. In some plant species, root tissues are also places where a high accumulation of Si can be found.
View Article and Find Full Text PDFDate palm () can accumulate as much as 1% silicon (Si), but not much is known about the mechanisms inherent to this process. Here, we investigated in detail the uptake, accumulation and distribution of Si in date palms, and the phylogeny of Si transporter genes in plants. We characterized the PdNIP2 transporter following heterologous expression in oocytes and used qPCR to determine the relative expression of Si transporter genes.
View Article and Find Full Text PDFSilicon (Si) effects on mineral nutrient status in plants are not well investigated. It is known that Si has a beneficial effect on plants under stressed conditions. The aim was to make a state of the art investigation of the Si influence: (1) on nutrient availability in four different soil types, namely clayish, sandy, alum shale and submerged soil; and (2) on accumulation of various nutrients in maize, lettuce, pea, carrot and wheat growing in hydroponics.
View Article and Find Full Text PDFBackground And Aims: Heavy metals induce changes in root metabolism and physiology, which can lead to a complex remodelling of the root system. The final morphological responses of radish (Raphanus sativus) roots exposed to toxic concentrations of the heavy metal (Cu) include root growth inhibition, differentiation of xylem vessels close to the root tip, enhanced suberin lamellae deposition and enhanced lateral root production. Recently, we have found that such changes in root morphology and anatomy are coupled to the formation of a subero-lignified apical deposit (SLAD) very close to the root tip.
View Article and Find Full Text PDFBackground And Aims: Root hairs increase the contact area of roots with soil and thereby enhance the capacity for solute uptake. The strict hair/non-hair pattern of Arabidopsis thaliana can change with nutrient deficiency or exposure to toxic elements, which modify root hair density. The effects of root hair density on cadmium (Cd) accumulation in shoots of arabidopsis genotypes with altered root hair development and patterning were studied.
View Article and Find Full Text PDFFour plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants.
View Article and Find Full Text PDF