Publications by authors named "Marek Urbansky"

The methylerythritol phosphate biosynthetic pathway, found in most Bacteria, some parasitic protists, and plant chloroplasts, converts D-glyceraldehyde phosphate and pyruvate to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where it intersects with the mevalonate pathway found in some Bacteria, Archaea, and Eukarya, including the cytosol of plants. D-3-Methylerythritol-4-phosphate (MEP), the first pathway-specific intermediate in the pathway, is converted to IPP and DMAPP by the consecutive action of the IspD-H proteins. We synthesized five D-MEP analogues-D-erythritol-4-phosphate (EP), D-3-methylthrietol-4-phosphate (MTP), D-3-ethylerythritol-4-phosphate (EEP), D-1-amino-3-methylerythritol-4-phosphate (NMEP), and D-3-methylerythritol-4-thiolophosphate (MESP)-and studied their ability to function as alternative substrates for the reactions catalyzed by the IspDF fusion and IspE proteins from Agrobacterium tumefaciens, which covert MEP to the corresponding eight-membered cyclic diphosphate.

View Article and Find Full Text PDF

Efficient syntheses of the non-mevalonate pathway intermediates 2-C-methylerythritol 4-phosphate (MEP) and 2-C-methylerythritol 2,4-cyclodiphosphate (ME-2,4-cycloPP), as well as the parent tetrol 2-C-methylerythritol, in enantiopure form from (2S,4R)-cis-2-phenyl-4-tert-butyldimethylsilyloxy-1,3-dioxan-5-one are reported. The 2S configuration of the C-methyl group was installed by highly axial-face selective addition of CH3MgBr (20:1) to the chiral dioxanone carbonyl group. Primary selective mono-phosphorylation and 2,4-bis-phosphorylation, followed by desilation and hydrogenolysis to the free mono- and diphosphates, and, in the latter case, cyclization to form the eight-membered phosphoryl anhydride, afforded MEP and ME-2,4-cycloPP in good yields.

View Article and Find Full Text PDF

[reaction: see text] Two key intermediates of the newly discovered mevalonate-independent pathway for isoprenoid biosynthesis were prepared. Optically pure 2-C-methyl-D-erythritol 4-phosphate and 2,4-cyclodiphosphate were chemically synthesized from D-arabitol using a convenient benzylidene and tert-butyldimethylsilyl protection of polyhydroxylated intermediates. The new scheme offers a straightforward route to analogues and labeled forms.

View Article and Find Full Text PDF

The x-ray crystal structure of dimeric (+)-bornyl diphosphate synthase, a metal-requiring monoterpene cyclase from Salvia officinalis, is reported at 2.0-A resolution. Each monomer contains two alpha-helical domains: the C-terminal domain catalyzes the cyclization of geranyl diphosphate, orienting and stabilizing multiple reactive carbocation intermediates; the N-terminal domain has no clearly defined function, although its N terminus caps the active site in the C-terminal domain during catalysis.

View Article and Find Full Text PDF

Regiospecifically labeled geranyl diphosphates ((2E,6E)-[1,1,8,8,8-(2)H(5)]- and (2E,6Z)-[1,1,9,9,9-(2)H(5)]-GDP) and D(2)O incorporation, in concert with NMR spectrometry, were employed to demonstrate a unique intramolecular syn-facial protonation-cyclization mechanism of action of 1,8-cineole synthase.

View Article and Find Full Text PDF