Cachexia, a devastating wasting syndrome characterized by severe weight loss with specific losses of muscle and adipose tissue, is driven by reduced food intake, increased energy expenditure, excess catabolism, and inflammation. Cachexia is associated with poor prognosis and high mortality and frequently occurs in patients with cancer, chronic kidney disease, infection, and many other illnesses. There is no effective treatment for this condition.
View Article and Find Full Text PDFCancer cachexia is a syndrome of weight loss that results from the selective depletion of skeletal muscle mass and contributes significantly to cancer morbidity and mortality. The driver of skeletal muscle atrophy in cancer cachexia is systemic inflammation arising from both the cancer and cancer treatment. While the importance of tumor derived inflammation is well described, the mechanism by which cytotoxic chemotherapy contributes to cancer cachexia is relatively unexplored.
View Article and Find Full Text PDFObjective: Natural killer (NK) cells are understudied in the context of metabolic disease and obesity. The goal of this study was to define the effect of NK cell ablation on systemic inflammation and glucose homeostasis in murine obesity.
Methods: A transgenic murine model was used to study the effect of NK cell ablation on systemic inflammation and glucose homeostasis in the context of diet-induced obesity using flow cytometry, QRTPCR, and glucose tolerance and insulin sensitivity testing.
Cachexia is a wasting condition defined by skeletal muscle atrophy in the setting of systemic inflammation. To explore the site at which inflammatory mediators act to produce atrophy in vivo, we utilized mice with a conditional deletion of the inflammatory adaptor protein myeloid differentiation factor 88 (MyD88). Although whole-body MyD88-knockout (wbMyD88KO) mice resist skeletal muscle atrophy in response to LPS, muscle-specific deletion of MyD88 is not protective.
View Article and Find Full Text PDFBackground: Animals respond to inflammation by suppressing normal high-energy activities, including feeding and locomotion, in favor of diverting resources to the immune response. The cytokine interleukin-1 beta (IL-1β) inhibits normal feeding and locomotor activity (LMA) via its actions in the central nervous system (CNS). Behavioral changes in response to IL-1β are mediated by myeloid differentiation factor 88 (MyD88) in non-hematopoietic cells.
View Article and Find Full Text PDFSignaling via the type 4-melanocortin receptor (MC4R) is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading.
View Article and Find Full Text PDFSkeletal muscle catabolism is a co-morbidity of many chronic diseases and is the result of systemic inflammation. Although direct inflammatory cytokine action on muscle promotes atrophy, nonmuscle sites of action for inflammatory mediators are less well described. We demonstrate that central nervous system (CNS)-delimited interleukin 1β (IL-1β) signaling alone can evoke a catabolic program in muscle, rapidly inducing atrophy.
View Article and Find Full Text PDF