Surface treatment intensity monitoring is still an open and challenging nondestructive testing problem. For the estimation of residual stress with ultrasonic measurements, local linear and nonlinear elastic constants are needed as input. In this paper, nonlinear elastic-wave interactions (also called wave mixing or scattering) - namely, the generation of secondary ultrasonic waves in a nonlinear medium - are considered as a prospective means for near-surface nonlinear elastic parameter evaluation.
View Article and Find Full Text PDFGrazing incidence ultrasonic microscopy (GIUM) is an experimental method for visualising the microstructures of polycrystals with local preferential orientations. It has previously been demonstrated on an austenitic stainless steel weld, exposing grains much smaller than the propagating wavelength, but the physical mechanism of the method has only been proposed as a hypothesis. In this paper, we use grain-scale finite element simulations based on the EBSD measurements to verify the principles behind GIUM images further and to assess how deep does the method penetrate the component under examination.
View Article and Find Full Text PDFUltrasonics
November 2018
For an elastic medium containing a homogeneous distribution of micro-cracks, an effective one-dimensional stress-strain relation has been determined with finite element simulations. In addition to flat micro-cracks, voids were considered that contain a Hertzian contact, which represents an example for micro-cracks with internal structure. The orientation of both types of micro-cracks was fully aligned or, for flat micro-cracks, totally random.
View Article and Find Full Text PDF