This review summarizes the current knowledge on essential vitamins B, B, B, and B. These B-complex vitamins must be taken from diet, with the exception of vitamin B, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney.
View Article and Find Full Text PDF: Many studies indicate the involvement of transient receptor potential (TRP) channels in the development of heart hypertrophy. However, the data is often conflicted and has originated in animal models. Here, we provide systematic analysis of TRP channels expression in human failing myocardium.
View Article and Find Full Text PDFChronic angiotensin-converting enzyme inhibitor (ACEIs) treatment can suppress arrhythmogenesis. To examine whether the effect is more immediate and independent of suppression of pathological remodelling, we tested the antiarrhythmic effect of short-term ACE inhibition in healthy normotensive rats. Wistar rats were administered with enalaprilat (ENA, i.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2012
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g.
View Article and Find Full Text PDFBackground: Protein phosphatase 5 (PP5) a serine/threonine phosphatase is ubiquitously expressed in mammalian tissues including the heart, but its physiological role in the heart is still unknown. Therefore, we used a transgenic mouse model to get a first insight into the cardiac role of PP5.
Methods And Results: We generated transgenic mice with cardiac myocyte specific overexpression of PP5.
The cAMP response element modulator (CREM)alpha is a widely expressed transcriptional repressor that is important for the termination of the T cell immune response and contributes to the abnormal T cell function in patients with systemic lupus erythematosus. We present evidence that APCs of Crem(-/-) mice express increased amounts of the costimulatory molecule CD86 and induce enhanced Ag-dependent and Ag-independent T cell proliferation. Similarly, human APCs in which CREMalpha was selectively suppressed expressed more CD86 on the surface membrane.
View Article and Find Full Text PDFBackground: Chronic stimulation of the beta(1)-adrenoceptor (beta(1)AR) plays a crucial role in the pathogenesis of heart failure; however, underlying mechanisms remain to be elucidated. The regulation by transcription factors cAMP response element-binding protein (CREB) and cyclic AMP response element modulator (CREM) represents a fundamental mechanism of cyclic AMP-dependent gene control possibly implicated in beta(1)AR-mediated cardiac deterioration.
Methods And Results: We studied the role of CREM in beta(1)AR-mediated cardiac effects, comparing transgenic mice with heart-directed expression of beta(1)AR in the absence and presence of functional CREM.
Am J Physiol Heart Circ Physiol
October 2008
Cardiac-specific overexpression of the catalytic subunit of protein phosphatase type 1 (PP1) in mice results in hypertrophy, depressed contractility, propensity to heart failure, and premature death. To further address the role of PP1 in heart function, PP1 mice were crossed with mice that overexpress a functional COOH-terminally truncated form of PP1 inhibitor-2 (I-2(140)). Protein phosphatase activity was increased in PP1 mice but was normalized in double transgenic (DT) mice.
View Article and Find Full Text PDFAims: The progression of human heart failure is associated with increased protein phosphatase 1 (PP1) activity, which leads to a higher dephosphorylation of cardiac regulatory proteins such as phospholamban. In this study, we tested the hypothesis whether the inhibitor-2 (I-2) of PP1 can mediate cardiac protection by inhibition of PP1 activity.
Methods And Results: We induced pressure overload by transverse aortic constriction (TAC) for 28 days in transgenic (TG) mice with heart-directed overexpression of a constitutively active form of I-2 (TG(TAC)) and wild-type littermates (WT(TAC)).
Background: Survivin inhibits apoptosis and regulates cell division in many organs, but its function in the heart is unknown.
Methods And Results: We show that cardiac-specific deletion of survivin resulted in premature cardiac death. The underlying cause was a dramatic reduction in total cardiomyocyte numbers as determined by a stereological method for quantification of cells per organ.
Am J Physiol Heart Circ Physiol
November 2007
Triadin is involved in the regulation of cardiac excitation-contraction coupling. However, the extent of its contribution to the regulation of sarcoplasmic reticulum (SR) Ca release remains unclear, because overexpression of triadin in single-transgenic mice was associated with the downregulation of its homologous protein, junctin. In the present study, this problem was circumvented by cross-breeding of mice with heart-directed overexpression of triadin and junctin (JxT).
View Article and Find Full Text PDFThe transcription factor cAMP response element (CRE)-binding protein (CREB, Creb1) plays a critical role in regulating gene expression in response to activation of the cAMP-dependent signaling pathway, which is implicated in the pathophysiology of heart failure. Using the Cre-loxP system, we generated mice with a cardiomyocyte-specific inactivation of CREB and studied in this model whether CREB is critical for cardiac function. CREB-deficient mice were viable and displayed neither changes in cardiac morphology nor alterations of basal or isoproterenol-stimulated left ventricular function in vivo or of important cardiac regulatory proteins.
View Article and Find Full Text PDFObjective: Protein phosphatase 1 (PP1) has been implicated in the control of cardiac function. Cardiac specific overexpression of the catalytic subunit, PP1c, results in hypertrophy and depressed contractility.
Methods: To further address the role of PP1, transgenic mice (TG) were generated that overexpress in heart a functional COOH-terminally truncated form (amino acids 1-140) of the PP1 inhibitor-2 (I-2(140)).
The transcriptional activation mediated by cAMP-response element (CRE) and transcription factors of the CRE-binding protein (CREB)/CRE modulator (CREM) family represents an important mechanism of cAMP-dependent gene regulation possibly implicated in detrimental effects of chronic beta-adrenergic stimulation in end-stage heart failure. We studied the cardiac role of CREM in transgenic mice with heart-directed expression of CREM-IbDeltaC-X, a human cardiac CREM isoform. Transgenic mice displayed atrial enlargement with atrial and ventricular hypertrophy, developed atrial fibrillation, and died prematurely.
View Article and Find Full Text PDFReversible protein phosphorylation is an essential regulatory mechanism in many cellular functions. In contrast to protein kinases, the role and regulation of protein phosphatases has remained ambiguous. To address this issue, we generated transgenic mice that overexpress the catalytic subunit alpha of protein phosphatase 2A (PP2A) (PP2Acalpha) in the heart driven by the alpha-myosin heavy chain promoter.
View Article and Find Full Text PDFObjective: The aim of the present study was to assess the effects of A(1)-adenosine receptor (A1-AR) stimulation in ventricle of A(1)-adenosine receptor overexpressing mice (transgenic mice, TG).
Methods: Effects of the A(1)-adenosine receptor agonist R-PIA ((-)-N(6)-phenylisopropyladenosine) on phosphorylation of phospholamban (PLB), Ca(2+) transients, Ca(2+) currents and cell shortening were studied in isolated ventricular cardiomyocytes.
Results: R-PIA alone did not affect contractility in isolated electrically stimulated cardiomyocytes from wild-type mice (WT) or TG.
Congestive heart failure is the common endpoint of various cardiac diseases representing a leading cause of cardiovascular mortality in Western countries. Characteristic functional alterations of the failing heart are explained by expressional changes of myocardial regulatory proteins; however, little is known about underlying mechanisms regulating cardiac gene expression in the failing heart. Here, we address the specific role of transcription factor CREM for cardiac function in CREM mutant mice with complete inactivation of the CREM gene.
View Article and Find Full Text PDF