This paper presents the results of an experimental study designed to evaluate the effect of repeated stretching cycles on the electrical resistance change in a NiTi alloy wire. In particular, tests were carried out to determine the effect of the type of loading on resistance change in the investigated wires. Wires with a diameter of 100 μm were used in the research.
View Article and Find Full Text PDFIn this paper, we present our investigation of the 2D Hand Gesture Recognition (HGR) which may be suitable for the control of the Automated Guided Vehicle (AGV). In real conditions, we deal with, among others, a complex background, changing lighting conditions, and different distances of the operator from the AGV. For this reason, in the article, we describe the database of 2D images created during the research.
View Article and Find Full Text PDFThe modern industrial and consumer applications in accordance with the concepts of Industry 4.0 and the Internet of Things are characterized by autonomy and self-sufficiency. This has led to an increase in the interest for the so-called smart materials, capable of combining the functionalities of sensors, actuators and, in some applications, control systems.
View Article and Find Full Text PDFIn this article, the use of Nickel Titanium (NiTi) alloy as a sensor is examined. A cyclic stretching test, that has various elongations (0.5 and 1%), is administered to NiTi wires with various diameters and lengths.
View Article and Find Full Text PDFIn this article, changes in NiTi alloy (Flexinol) electrical resistance during cyclic stretching with small elongation were investigated. A dedicated test stand consisting of motorized vertical test stand, force gauge, and electric resistance measuring device with an accuracy of 0.006 Ω was developed.
View Article and Find Full Text PDF