Publications by authors named "Marek K Sliwinski"

The high mortality rate for pancreatic cancer (PC) is due to the lack of specific symptoms at early tumor stages and a high biological aggressiveness. Reliable biomarkers and new therapeutic targets would help to improve outlook in PC. In this study, we analyzed the expression of GNMT in a panel of pancreatic cancer cell lines and in early-stage paired patient tissue samples (normal and diseased) by quantitative reverse transcription-PCR (qRT-PCR).

View Article and Find Full Text PDF

This study explored the persistence and spatial distribution of a diverse Archaeal assemblage inhabiting a temperate mixed forest ecosystem. Persistence under native conditions was measured from 2001 to 2010, 2011, and 2012 by comparison of 16S rRNA gene clone libraries. The Archaeal assemblages at each of these time points were found to be significantly different (AMOVA, P < 0.

View Article and Find Full Text PDF

DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis.

View Article and Find Full Text PDF

Leavenworthia crassa is a rosette flowering species that differs from inflorescence flowering species, such as Arabidopsis thaliana, in having elongated pedicels and shortened interfloral internodes on the main axis. Based on previous experiments, we hypothesized that changes to the L. crassa TFL1 ortholog, LcrTFL1, were important in the evolution of rosette flowering.

View Article and Find Full Text PDF

Plasma membrane proteins internalized by endocytosis and targeted for degradation are sorted into lumenal vesicles of multivesicular bodies (MVBs) by the endosomal sorting complexes required for transport (ESCRT) machinery. Here, we show that the Arabidopsis thaliana ESCRT-related CHARGED MULTIVESICULAR BODY PROTEIN/CHROMATIN MODIFYING PROTEIN1A (CHMP1A) and CHMP1B proteins are essential for embryo and seedling development. Double homozygous chmp1a chmp1b mutant embryos showed limited polar differentiation and failed to establish bilateral symmetry.

View Article and Find Full Text PDF

Whereas most Brassicaceae produce flowers on an elongated inflorescence, a few lineages produce flowers directly from the vegetative rosette on elongated pedicels. Knowing the extent to which independent origins of rosette flowering involve the same developmental and genetic mechanisms could clarify the constraints acting on plant architectural evolution. Prior work in Idahoa, Ionopsidium, and Leavenworthia suggested that changes in the activity or expression of the flower meristem identity gene, LEAFY (LFY), played a role in all three origins of rosette flowering.

View Article and Find Full Text PDF

Idahoa scapigera produces solitary flowers in the axils of rosette leaves without elongation of the shoot axis, a rosette-flowering architecture. Previous work with one of the two I. scapigera LFY paralogs, IscLFY1, showed that this gene caused aerial flowering rosettes in Arabidopsis thaliana.

View Article and Find Full Text PDF

In yeast and mammals, the AAA ATPase Vps4p/SKD1 (for Vacuolar protein sorting 4/SUPPRESSOR OF K(+) TRANSPORT GROWTH DEFECT1) is required for the endosomal sorting of secretory and endocytic cargo. We identified a VPS4/SKD1 homolog in Arabidopsis thaliana, which localizes to the cytoplasm and to multivesicular endosomes. In addition, green fluorescent protein-SKD1 colocalizes on multivesicular bodies with fluorescent fusion protein endosomal Rab GTPases, such as ARA6/RabF1, RHA1/RabF2a, and ARA7/RabF2b, and with the endocytic marker FM4-64.

View Article and Find Full Text PDF
Article Synopsis
  • Nonthermophilic members of the archaeal division Crenarchaeota, previously thought to be linked only to extreme environments, have been found to be abundant in normal marine and terrestrial habitats.
  • Metabolic studies on these organisms have been challenging due to difficulties in isolating and growing them in culture.
  • Recent research shows that one dominant type of Crenarchaeota thrives in the roots of tomato plants, suggesting that their diversity is influenced by the soil environment around plant roots and confirming their ability to grow outside extreme conditions.
View Article and Find Full Text PDF

To explore whether the crenarchaeal consortium found in the rhizosphere is distinct from the assemblage of crenarchaeotes inhabiting bulk soil, PCR-single-stranded-conformation polymorphism (PCR-SSCP) profiles were generated for 76 plant samples collected from native environments. Divergent terrestrial plant groups including bryophytes (mosses), lycopods (club mosses), pteridophytes (ferns), gymnosperms (conifers), and angiosperms (seed plants) were collected for this study. Statistical analysis revealed significant differences between rhizosphere and bulk soil PCR-SSCP profiles (Hotelling paired T(2) test, P < 0.

View Article and Find Full Text PDF

Microbial ecologists have discovered novel rRNA genes (rDNA) in mesophilic soil habitats worldwide, including sequences that affiliate phylogenetically within the division Crenarchaeota (domain Archaea). To characterize the spatial distribution of crenarchaeal assemblages in mesophilic soil habitats, we profiled amplified crenarchaeal 16S rDNA sequences from diverse soil ecosystems by using PCR-single-stranded-conformation polymorphism (PCR-SSCP) analysis. PCR-SSCP profiles provide a measure of relative microbial diversity in terms of richness (number of different phylotypes as estimated from the number of unique PCR-SSCP peaks) and evenness (abundance of each phylotype as estimated from the relative area under a peak).

View Article and Find Full Text PDF