The NMR solution structures of human telomeric (Htel) G-quadruplexes (GQs) are characterized by the presence of two lateral loops complemented by either diagonal or propeller loops. Bases of a given loop can establish interactions within the loop as well as with other loops and the flanking bases. This can lead to a formation of base alignments above and below the GQ stems.
View Article and Find Full Text PDFNucleic Acids Res
September 2018
We have carried out an extended set of standard and enhanced-sampling MD simulations (for a cumulative simulation time of 620 μs) with the aim to study folding landscapes of the rGGGUUAGGG and rGGGAGGG parallel G-hairpins (PH) with propeller loop. We identify folding and unfolding pathways of the PH, which is bridged with the unfolded state via an ensemble of cross-like structures (CS) possessing mutually tilted or perpendicular G-strands interacting via guanine-guanine H-bonding. The oligonucleotides reach the PH conformation from the unfolded state via a conformational diffusion through the folding landscape, i.
View Article and Find Full Text PDFG-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported.
View Article and Find Full Text PDFThe sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions.
View Article and Find Full Text PDFWe provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems.
View Article and Find Full Text PDFClassical force field (FF) molecular dynamics (MD) simulations of RNA tetranucleotides have substantial problems in reproducing conformer populations indicated by NMR experiments. To provide more information about the possible sources of errors, we performed quantum mechanical (QM, TPSS-D3/def2-TZVP) and molecular mechanics (MM, AMBER parm99bsc0+χ) calculations of different r(CCCC), r(GACC), and r(UUUU) conformers obtained from explicit solvent MD simulations. Solvent effects in the static QM and MM calculations were mimicked using implicit solvent models (COSMO and Poisson-Boltzmann, respectively).
View Article and Find Full Text PDFWe report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations.
View Article and Find Full Text PDFA set of conformations obtained from explicit solvent molecular dynamics (MD) simulations of the Sarcin-Ricin internal loop (SRL) RNA motif is investigated using quantum mechanical (QM, TPSS-D3/def2-TZVP DFT-D3) and molecular mechanics (MM, AMBER parm99bsc0+χol3 force field) methods. Solvent effects are approximated using implicit solvent methods (COSMO for DFT-D3; GB and PB for MM). Large-scale DFT-D3 optimizations of the full 11-nucleotide motif are compared to MM results and reveal a higher flexibility of DFT-D3 over the MM in the optimization procedure.
View Article and Find Full Text PDFThe mRNA decoding site (A-site) in the small ribosomal subunit controls fidelity of the translation process. Here, using molecular dynamics simulations and bioinformatic analyses, we investigated the structural dynamics of the human mitochondrial A-site (native and A1490G mutant) and compared it with the dynamics of the bacterial A-site. We detected and characterized a specific RNA backbone configuration, S-turn2, which occurs in the human mitochondrial but not in the bacterial A-site.
View Article and Find Full Text PDFWe present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry.
View Article and Find Full Text PDFThe sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations.
View Article and Find Full Text PDF