Publications by authors named "Marek Grzelczak"

Gold bipyramids (AuBPs), despite having superior properties compared to their spectroscopically similar counterparts, gold nanorods, have found comparatively limited applications. This discrepancy is primarily due to the lack of protocols to tailor their dimensions. Typically, the concentration of Au seeds is virtually the sole factor that determines the aspect ratio and thus, the optical properties of AuBPs.

View Article and Find Full Text PDF

Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions.

View Article and Find Full Text PDF

Proper formulation of systems containing plasmonic and photochromic units, such as gold nanoparticles and azobenzene derivatives, yields materials and interfaces with synergic functionalities. Moreover, gold nanoparticles are known to accelerate the Z-E isomerization of azobenzene molecules in the dark. However, very little is known about the light-driven, plasmon-assisted Z-E isomerization of azobenzene compounds.

View Article and Find Full Text PDF

Periodic responses to nonperiodic energy inputs, such as oscillations, are hallmarks of living systems. Nanoparticle-based systems have largely remained unexplored in the generation of oscillatory features. Here, we demonstrate a nanosystem featuring hierarchical response to light, where thermoplasmonic effects and reversible DNA-hybridization generate thermal convective forces and ultimately, oscillatory hydrodynamic flows.

View Article and Find Full Text PDF

In diverse fields, machine learning (ML) has sparked transformative changes, primarily driven by the wealth of big data. However, an alternative approach seeks to mine insights from "", offering the possibility to reveal missed knowledge and escape potential knowledge traps. In this context, Bayesian optimization (BO) protocols have emerged as crucial tools for optimizing the synthesis and discovery of a broad spectrum of compounds including nanoparticles.

View Article and Find Full Text PDF

Unraveling the nuanced interplay between the morphology and the optical properties of plasmonic nanoparticles is crucial for targeted applications. Managing the relationship becomes significantly complex when dealing with anisotropic nanoparticles that defy a simple description using parameters like length, width, or aspect ratio. This complexity requires computationally intensive numerical modeling and advanced imaging techniques.

View Article and Find Full Text PDF

Liquid-phase transmission electron microscopy is a burgeoning experimental technique for monitoring nanoscale dynamics in a liquid environment, increasingly employing microfluidic reactors to control the composition of the sample solution. Current challenges comprise fast mass transport dynamics inside the central nanochannel of the liquid cell, typically flow cells, and reliable fixation of the specimen in the limited imaging area. In this work, we present a liquid cell concept - the diffusion cell - that satisfies these seemingly contradictory requirements by providing additional on-chip bypasses to allow high convective transport around the nanochannel in which diffusive transport predominates.

View Article and Find Full Text PDF

Plexcitonic systems based on metal nanostructures and molecular J-aggregates offer an excellent opportunity to explore the intriguing interplay between plasmonic excitations and excitons, offering unique insights into light-matter interactions at the nanoscale. Their potential applications in photocatalysis have prompted a growing interest in both their synthesis and the analysis of their properties. However, in order to construct a high-performing system, it is essential to ensure chemical and spectral compatibility between both components.

View Article and Find Full Text PDF

In principle, designing and synthesizing almost any class of colloidal crystal is possible. Nonetheless, the deliberate and rational formation of colloidal quasicrystals has been difficult to achieve. Here we describe the assembly of colloidal quasicrystals by exploiting the geometry of nanoscale decahedra and the programmable bonding characteristics of DNA immobilized on their facets.

View Article and Find Full Text PDF

Temperature-modulated colloidal phase of plasmonic nanoparticles is a convenient playground for resettable soft-actuators or colorimetric sensors. To render reversible clustering under temperature change, bulky ligands are required, especially if anisotropic morphologies are of interest. This study showcases thermoresponsive gold nanorods by employing small surface ligands, bis (p-sulfonatophenyl) phenyl-phosphine dihydrate dipotassium salt (BSPP) and native cationic surfactant.

View Article and Find Full Text PDF

Self-oscillation-the periodic change of a system under a non-periodic stimulus-is vital for creating low-maintenance autonomous devices in soft robotics technologies. Soft composites of macroscopic dimensions are often doped with plasmonic nanoparticles to enhance energy dissipation and generate periodic response. However, while it is still unknown whether a dispersion of photonic nanocrystals may respond to light as a soft actuator, a dynamic analysis of nanocolloids self-oscillating in a liquid is also lacking.

View Article and Find Full Text PDF

Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The reason is the lack of control over the interparticle distances, number of nanoparticles per cluster, or multiple mutual orientations during aggregation events, blurring the threshold between positive and negative readout.

View Article and Find Full Text PDF

Even with the widespread uptake of vaccines, the SARS-CoV-2-induced COVID-19 pandemic continues to overwhelm many healthcare systems worldwide. Consequently, massive scale molecular diagnostic testing remains a key strategy to control the ongoing pandemic, and the need for instrument-free, economic and easy-to-use molecular diagnostic alternatives to PCR remains a goal of many healthcare providers, including WHO. We developed a test (Repvit) based on gold nanoparticles that can detect SARS-CoV-2 RNA directly from nasopharyngeal swab or saliva samples with a limit of detection (LOD) of 2.

View Article and Find Full Text PDF

Liquid-Phase Transmission Electron Microscopy (LP-TEM) offers the opportunity to study nanoscale dynamics of phenomena related to materials and life science in a native liquid environment and in real time. Until now, the opportunity to control/induce such dynamics by changing the chemical environment in the liquid flow cell (LFC) has rarely been exploited due to an incomplete understanding of hydrodynamic properties of LP-TEM flow systems. This manuscript introduces a method for hydrodynamic characterization of LP-TEM flow systems based on monitoring transmitted intensity while flowing a strongly electron scattering contrast agent solution.

View Article and Find Full Text PDF

The development of plasmonic nanomaterials with chiral geometry has drawn extensive attention owing to their practical implications in chiral catalysis, chiral metamaterials, or enantioselective biosensing and medicine. However, due to the lack of effective synthesis methods of hydrophobic nanoparticles (NPs) showing intrinsic, plasmonic chirality, their applications are currently limited to aqueous systems. In this work, we resolve the problem of achieving hydrophobic Au NPs with intrinsic chirality by efficient phase transfer of water-soluble NPs using low molecular weight, liquid crystal-like ligands.

View Article and Find Full Text PDF

A statistical thermodynamics variational criterion is propounded to study thermal hysteresis in reversible clustering of gold (Au) nanoparticles. Experimentally, a transient equilibrium mapping analysis is employed to characterize it thermodynamically, further measurements being performed at the nanostructural and electrochemical levels (UV-Vis-NIR spectra, SLS/SAXS, zeta potential). Theoretically, it is successfully interpreted as a thermodynamic cycle, prompting that nanoclusters has potential to produce useful work from heat and paving the way to nanoclustering heat engines.

View Article and Find Full Text PDF

Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst.

View Article and Find Full Text PDF

In a typical colloidal synthesis, the molecules of the reducing agent are irreversibly oxidized during nanocrystal growth. Such a scenario is of questionable sustainability when confronted with naturally occurring processes in which reducing agent molecules are cyclically regenerated. Here we show that cofactor molecules once consumed in the nucleation and growth of metallic nanocrystals can be photoregenerated using metallic nanocrystals as photocatalysts and reused in the subsequent nucleation process.

View Article and Find Full Text PDF

The colloidal stability of metal nanoparticles is tremendously dependent on the thermal behavior of polymer brushes. Neat polyethylene glycol (PEG) presents an unconventional upper critical solution temperature in ethanol, where phase segregation and crystallization coexist. This thermal behavior translated to a PEG brush has serious consequences on the colloidal stability in ethanol of gold nanoparticles (AuNPs) modified with PEG brushes upon cooling.

View Article and Find Full Text PDF

Excitons in semiconductor quantum dots (QDs) feature high values of the two-photon absorption cross-sections (TPACSs), enabling applications of two-photon-excited photoluminescence (TPE PL) of QDs in biosensing and nonlinear optoelectronics. However, efficient TPE PL of QDs requires high-intensity laser fields, which limits these applications. There are two possible ways to increase the TPE PL of QDs: by increasing their photoluminescence quantum yield (PLQY) or by further increasing the TPACS.

View Article and Find Full Text PDF

Cyclic polymers behave different than linear polymers due to the lack of end groups and smaller coil dimensions. Herein, we demonstrate that cyclic polyethylene glycol (PEG) can be used as an alternative of classical linear PEG ligands for gold nanoparticle (AuNP) stabilization. We observed that the brush height of cyclic PEG on AuNPs of diameter 4.

View Article and Find Full Text PDF

Hybridized plexcitonic states have unique properties which have been widely studied in recent decades in many research fields targeted at both fundamental science and innovative applications. However, to make these applications come true one needs to ensure the stabilization and preservation of electronic states and optical transitions in hybrid nanostructures, especially under the influence of external stressors, in regimes, that have not yet been comprehensively investigated. The present work shows that the nanohybrid system, composed of plasmonic nanoparticles and J-aggregates of organic molecules, displays outstanding resistance to harsh environmental stressors such as temperature, pH and strong light irradiation as well as demonstrates long-term stability and processability of the nanostructures both in weak and strong coupling regimes.

View Article and Find Full Text PDF

Plasmonic nanoparticles exhibit excellent light-harvesting properties in the visible spectral range, which makes them a convenient material for the conversion of light into useful chemical fuel. However, the need for using surface ligands to ensure colloidal stability of nanoparticles inhibits their photochemical performance due to the insulating molecular shell hindering the carrier transport. We show that cellulose fibers, abundant in chemical functional groups, can serve as a robust substrate for the immobilization of gold nanorods, thus also providing a facile way to remove the surfactant molecules.

View Article and Find Full Text PDF

The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker.

View Article and Find Full Text PDF

The interaction of several components in the strong coupling regime yielding multiple Rabi splittings opens up remarkable possibilities for studies of multimode hybridization and energy transfer, which is of considerable interest in both fundamental and applied science. Here we demonstrate that three different components, such as core-shell Au@Ag nanorods and J-aggregates of two different dyes, can be integrated into a single hybrid structure, which leads to strong collective exciton-plasmon coupling and double-mode Rabi splitting totaling 338 meV. We demonstrate strong coupling in these multicomponent plexitonic nanostructures by means of magnetic circular dichroism spectroscopy and demonstrate strong magneto-optical activity for the three hybridized states resulting from this coupling.

View Article and Find Full Text PDF