Publications by authors named "Marek Burakowski"

Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet. However, high-throughput technology for single-photon generation at 1550 nm remained a missing building block to overcome present limitations in quantum communication and information technologies. Here, we demonstrate the high-throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots.

View Article and Find Full Text PDF

Quantum information processing with photons in small-footprint and highly integrated silicon-based photonic chips requires incorporating non-classical light sources. In this respect, self-assembled III-V semiconductor quantum dots (QDs) are an attractive solution, however, they must be combined with the silicon platform. Here, by utilizing the large-area direct bonding technique, we demonstrate the hybridization of InP and SOI chips, which allows for coupling single photons to the SOI chip interior, offering cost-effective scalability in setting up a multi-source environment for quantum photonic chips.

View Article and Find Full Text PDF

Single InP-based quantum dots emitting in the third telecom window are probed quasi-resonantly in polarization-resolved microphotoluminescence experiments. For charged quantum dots we observe negative circular polarization being a fingerprint of the optical spin writing of the carriers within the quantum dots. The investigated quantum dots have a very dense ladder of excited states providing relatively easy quasi-resonant optical excitation, and together with telecom wavelengths emission they bring quantum gates and memories closer to compatibility with fiber-optic communication.

View Article and Find Full Text PDF

This erratum corrects the value of the wetting layer thickness provided in our Article [Opt. Express29, 34024 (2021)10.1364/OE.

View Article and Find Full Text PDF

Magneto-optical parameters of trions in novel large and symmetric InP-based quantum dots, uncommon for molecular beam epitaxy-grown nanostructures, with emission in the third telecom window, are measured in Voigt and Faraday configurations of an external magnetic field. The diamagnetic coefficients are found to be in the range of 1.5-4 μeV/T, and 8-15 μeV/T, respectively out-of-plane and in-plane of the dots.

View Article and Find Full Text PDF

Single-photon sources are key building blocks in most of the emerging secure telecommunication and quantum information processing schemes. Semiconductor quantum dots (QD) have been proven to be the most prospective candidates. However, their practical use in fiber-based quantum communication depends heavily on the possibility of operation in the telecom bands and at temperatures not requiring extensive cryogenic systems.

View Article and Find Full Text PDF