Publications by authors named "Marek Belis"

Correction for 'Simple synthetic access to [Au(IBiox)Cl] complexes' by Ekaterina A. Martynova , , 2023, , 7558-7563, https://doi.org/10.

View Article and Find Full Text PDF

Energy transfer (EnT) photocatalysis has emerged as a valuable tool for constructing complex organic scaffolds [2 + 2]-cycloaddition reactions. Herein, we present the use of [Au(SIPr)(Cbz)] as a sensitizer for the [2 + 2]-cycloaddition of coumarins and unactivated alkenes. Widely used in EnT catalysis, iridium and organic sensitizers proved less efficient under the examined catalytic conditions.

View Article and Find Full Text PDF

The solid-state synthesis of single-crystalline organic polymers, having functional properties, remains an attractive and developing research area in polymer chemistry and materials science. However, light-triggered topochemical synthesis of crystalline polymers comprising an organoboron backbone has not yet been reported. Here, we describe an intriguing example of single-crystal-to-single-crystal (SCSC) rapid photosynthesis (occurs on a seconds-scale) of two structurally different linear organoboron polymers, driven by environmentally sustainable visible/sun light, obtained from the same monomer molecule.

View Article and Find Full Text PDF

Herein, we report the catalytic activity of a series of platinum(II) pre-catalysts, bearing N-heterocyclic carbene (NHC) ligands, in the alkene hydrosilylation reaction. Their structural and electronic properties are fully investigated using X-ray diffraction analysis and nuclear magnetic resonance spectroscopy (NMR). Next, our study presents a structure-activity relationship within this group of pre-catalysts and gives mechanistic insights into the catalyst activation step.

View Article and Find Full Text PDF

Green and sustainable access to chiral and achiral gold-IBiox complexes is reported. The gold complexes were synthesized using a simple, air-tolerant, weak base protocol carried out in a green solvent. Their catalytic activity was examined in the hydroamination of alkynes.

View Article and Find Full Text PDF

In the quest for essential energy solutions towards an ecological friendly future, the transformation of visible light/solar energy into mechanical motions in metal-free luminescent crystals offers a sustainable choice of smart materials for lightweight actuating, and all-organic electronic devices. Such green energy-triggered photodynamic motions with room temperature phosphorescence (RTP) emission in molecular crystals have not been reported yet. Here, we demonstrate three new stoichiometrically different Lewis acid-base molecular organoboron crystals (PS1, PS2, and PS3), which exhibit rapid photosalient effects (ballistic splitting, moving, and jumping) under both ultraviolet (UV) and visible light associated with quantitative single-crystal-to-single-crystal (SCSC) [2+2] cycloaddition of preorganized olefins.

View Article and Find Full Text PDF

The synthesis of novel phosphine palladium PEPPSI and dimer complexes bearing RuPhos, SPhos and XPhos phosphines is reported. The crystal structures of XPhos Pd PEPPSI with pyridine, SPhos Pd PEPPSI with 3-chloropyridine as throw-away ligands and the RuPhos palladium dimer were obtained and compared with previously reported congeners. The catalytic activity of these novel complexes was examined a C-N coupling reaction involving 4-chloroanisole and morpholine.

View Article and Find Full Text PDF

Photoluminescent molecular crystals integrated with the ability to transform light energy into macroscopic mechanical motions are a promising choice of materials for both actuating and photonic devices. However, such dynamic photomechanical effects, based on molecular organoboron compounds as well as phosphorescent crystalline materials, are not yet known. Here we present an intriguing example of photomechanical molecular single crystals of a newly synthesized organoboron containing Lewis acid-base molecular adduct (BN1, substituted triphenylboroxine and 1,2-di(4-pyridyl)ethylene) having a capsule shape molecular geometry.

View Article and Find Full Text PDF

We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and -tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents.

View Article and Find Full Text PDF

A sustainable and facile weak-base synthetic route to platinum N-heterocyclic carbene (NHC) complexes is disclosed. The mechanism of this reaction is also elucidated experimental and computational investigations. This straightforward protocol is then used for the synthesis of novel Pt(II)-NHC complexes and its utility is further explored to access key Pt(0)-NHC precatalysts.

View Article and Find Full Text PDF

A general, user-friendly synthetic route to [Pt(NHC)(L)Cl2] and [Pt(NHC)(dvtms)] (L = DMS, Py; DMS = dimethyl sulfide, dvtms = divinyltetramethylsiloxane, Py = pyridine) complexes has been developed. The procedure is applicable to a wide range of ligands and enables facile synthetic access to key Pt(0)- and Pt(ii)-NHC complexes used in hydrosilylation catalysis.

View Article and Find Full Text PDF

The reaction mechanism leading to the formation of cross-coupling palladium pre-catalysts of the PEPPSI family was investigated. Two intermediates were isolated and proved to be both suitable synthons to the pre-catalysts, with one permitting the design of a novel and greener user-friendly synthetic route. In light of this mechanistic understanding, the traditional one-pot method was shown to be possible using stoichiometric amounts of throw-away ligand, which represents a considerable synthetic improvement over the wasteful "in pyridine" approach.

View Article and Find Full Text PDF