Separation of equally sized particles distinguished solely by material properties remains still a very challenging task. Here a simple separation of differently charged, thermo-responsive polymeric particles (for example microgels) but equal in size, via the combination of pressure-driven microfluidic flow and precise temperature control is proposed. The separation principle relies on forcing thermo-responsive microgels to undergo the volume phase transition during heating and therefore changing its size and correspondingly the change in drift along a pressure driven shear flow.
View Article and Find Full Text PDFOn-demand switch on/off blood clogging is of paramount importance for the survival of mammals, for example as a quick response to seal damage wounds to minimize their bleeding rate. This mechanism is a complex chain process from initiated red blood cell aggregation at the target location (open wound) that quickly seals on a macroscopic scale the damaged flash. Inspired by nature an on-demand switchable particle clogging mechanism is developed with high spatial resolution down to micrometer size using light as an external non-invasive stimulation.
View Article and Find Full Text PDFThe quartz crystal microbalance with dissipation (QCM-D) has become an efficient and versatile measurement technique for investigating the external stimuli responsiveness such as pH, temperature, or chemical gradients of surface-active substances at solid-liquid interfaces. However, light responsive adsorption investigation is more challenging presumably since the quartz crystal itself reacts to optical stimulation, showing frequency and dissipation shifts known as light induced detuning (LID). This yields an effective measurement artifact and makes data interpretation with respect to dynamic interactions of light responsive materials rather challenging.
View Article and Find Full Text PDFTheir inherent directional information renders patchy particles interesting building blocks for advanced applications in materials science. In this study, a feasible method to fabricate patchy silicon dioxide microspheres is demonstrated, which they are able to equip with tailor-made polymeric materials as patches. Their fabrication method relies on a solid-state supported microcontact printing (µCP) routine optimized for the transfer of functional groups to capillary-active substrates, which is used to introduce amino functionalities as patches to a monolayer of particles.
View Article and Find Full Text PDFWe report on triggering of p(NIPAM-AA) microgels' photo-responsiveness by making complexes with a spiropyran (SP) containing surfactant. Being dissolved in water, the SP surfactant in its merocyanine state bears three charges, while irradiation with UV and vis light leads to the partial or complete reversal of the SP state. The complexation of the photo-responsive amphiphile with swollen anionic microgels results in charge compensation within the gel interior and as a consequence its size reduces and the volume phase transition temperature (VPTT) decreases down to 32 °C.
View Article and Find Full Text PDFInspired by mussel proteins that enable surface binding in harsh marine environments, we envisioned a platform of protein-repellent macromolecules based on poly(2-ethyl-2-oxazoline) carrying catechol and cationic functional groups. To facilitate surface attachment, catechol units were installed by copolymerizing a functional comonomer, ., 2-(3,4-dimethoxyphenyl)-2-oxazoline, in a gradient fashion.
View Article and Find Full Text PDFSeparation of particles by size, morphology, or material identity is of paramount importance in fields such as filtration or bioanalytics. Up to now separation of particles distinguished solely by surface properties or bulk/surface morphology remains a very challenging process. Here a combination of pressure-driven microfluidic flow and local self-phoresis/osmosis are proposed via the light-induced chemical activity of a photoactive azobenzene-surfactant solution.
View Article and Find Full Text PDFXanthate-supported photo-iniferter (XPI)-reversible addition-fragmentation chain-transfer (RAFT) polymerization is introduced as a fast and versatile photo-polymerization strategy. Small amounts of xanthate are added to conventional RAFT polymerizations to act as a photo-iniferter under light irradiation. Radical exchange is facilitated by the main CTA ensuring control over the molecular weight distribution, while xanthate enables an efficient photo-(re)activation.
View Article and Find Full Text PDFPolymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent.
View Article and Find Full Text PDFHere we show that microgels trapped at a solid wall can issue liquid flow and transport over distances several times larger than the particle size. The microgel consists of cross-linked poly(-isopropylacrylamide--acrylic acid) (PNIPAM-AA) polymer chains loaded with cationic azobenzene-containing surfactant, which can assume either a or a state depending on the wavelength of the applied irradiation. The microgel, being a selective absorber of -isomers, responds by changing its volume under irradiation with light of appropriate wavelength at which the -isomers of the surfactant molecules diffuse out of the particle interior.
View Article and Find Full Text PDFA cationic surfactant containing a spiropyran unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyran (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided.
View Article and Find Full Text PDFNanoparticles (NPs) have great potential for biological applications as typically they exhibit strongly size-dependent properties. Specifically, the interaction of NPs with phospholipid membranes is significantly relevant to nanomedicine and the related field of nanotoxicology. Therefore, the investigation of interactions of NPs with model membranes is not only fundamentally important but also practically valuable to understand interactions of NPs with more complex cell membranes.
View Article and Find Full Text PDFIonic complexation of azobenzene-containing surfactants with any type of oppositely charged soft objects allows for making them photo-responsive in terms of their size, shape and surface energy. Investigation of the photo-isomerization kinetic and isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged objects is a necessary prerequisite for understanding the structural response of photo-sensitive complexes. Here, we report on photo-isomerization kinetics of a photo-sensitive surfactant in the presence of poly(acrylic acid, sodium salt).
View Article and Find Full Text PDFWe report on the adsorption kinetics of azobenzene-containing surfactants on solid surfaces of different hydrophobicity. The understanding of this processes is of great importance for many interfacial phenomena that can be actuated and triggered by light, since the surfactant molecules contain a photoresponsive azobenzene group in their hydrophobic tail. Three surfactant types are studied, differing in the spacer connecting the headgroup and the azobenzene unit by between 6 and 10 CH groups.
View Article and Find Full Text PDFWe report on photoisomerization kinetics of azobenzene containing surfactants in aqueous solution. The surfactant molecule consists of a positively charged trimethylammonium bromide head group, a hydrophobic spacer connecting via 6 to 10 CH groups to the azobenzene unit, and the hydrophobic tail of 1 and 3CH groups. Under exposure to light, the azobenzene photoisomerizes from more stable trans- to metastable cis-state, which can be switched back either thermally in dark or by illumination with light of a longer wavelength.
View Article and Find Full Text PDF