Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar.
View Article and Find Full Text PDFPhosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI).
View Article and Find Full Text PDFAtherosclerosis is a proliferative fibro-inflammatory disease developing in the arterial wall, inducing a deficient blood flow or a lack of blood flow. Moreover, by rupture of the defective vascular wall, atherosclerosis induces occlusive thrombus formation, which represents the main cause of myocardial infarction or stroke and the most frequent cause of death. Despite the advances in the cardiovascular field, many questions remain unanswered, and additional basic research is essential to improve our understanding of the molecular mechanisms during atherosclerosis and its effects.
View Article and Find Full Text PDFRecruitment of neutrophils to the heart following acute myocardial infarction (MI) initiates inflammation and contributes to adverse post-infarct left ventricular (LV) remodeling. However, therapeutic inhibition of neutrophil recruitment into the infarct zone has not been beneficial in MI patients, suggesting a possible dual role for neutrophils in inflammation and repair following MI. Here, we investigate the effect of neutrophils on cardiac fibroblast function following MI.
View Article and Find Full Text PDFObjective: We aimed to elucidate the local role of FGF23 after myocardial infarction in a mouse model induced by left anterior descending artery (LAD) ligation. APPROACH AND RESULTS: (C57BL/6 N) mice underwent MI via LAD ligation and were sacrificed at different time-points post MI. The expression and influence of FGF23 on fibroblast and macrophages was also analyzed using isolated murine cells.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2018
Percutaneous transluminal coronary angioplasty and subsequent vascular scaffold implantation remains the prevalent invasive treatment of coronary heart disease. In-stent restenosis remained a problem with bare metal stents, until drug-eluting stents were introduced. The inhibition of the healing process by the antimitotic drug coating and the permanent metallic remnant can promote sub-acute and delayed stent thrombosis.
View Article and Find Full Text PDFMyocardial infarction (MI) is a major cause of death in Western countries and finding new strategies for its prevention and treatment is thus of high priority. In a previous study, we have demonstrated a pathophysiologic relevance for the heterophilic interaction of CCL5 and CXCL4 in the progression of atherosclerosis. A specifically designed compound (MKEY) to block this CCL5-CXCR4 interaction is investigated as a potential therapeutic in a model of myocardial ischemia/reperfusion (I/R) damage.
View Article and Find Full Text PDFDiscoveries (Craiova)
September 2015
Atomic force microscopy (AFM) is a pioneer imaging technique commonly employed by biological researchers in detection of the properties of biological membranes over the last decade. The AFM findings distinguish its applicability from the conventional methods, such as: confocal, multi-photons, electron microscopy, etc. as well as from the mechanical methods (compression and indentation test, extensiometry, etc.
View Article and Find Full Text PDFBackground: Chemokines are critical mediators in controlling and monitoring the healing and ventricular remodeling after myocardial infarction (MI). They proved to be valuable targets for therapeutic measures to reduce the scar formation and to preserve heart function in patients suffering MI. In the present study, the role of CCR3 in myocardial ischemia/reperfusion was established.
View Article and Find Full Text PDFMyocardial infarction still remains the main cause of death in western countries, despite considerable progress in the stent development area in the last decades. For clarification of the underlying mechanisms and the development of new therapeutic strategies, the availability of valid animal models are mandatory. Since we need new insights into pathomechanisms of cardiovascular diseases under in vivo conditions to combat myocardial infarction, the validity of the animal model is a crucial aspect.
View Article and Find Full Text PDFBackground: The renin-angiotensin system and especially the angiotensin peptides play a central role in blood pressure regulation. Here, we hypothesize that an as-yet unknown peptide is involved in the action of angiotensin II modulating the vasoregulatory effects as a cofactor.
Methods And Results: The peptide with vasodilatory properties was isolated from adrenal glands chromatographically.
Background: Platelet microparticles (PM) are the most abundant cell-derived microparticles in the blood, and accumulate in thrombo-inflammatory diseases. Platelets produce PM upon aging via an apoptosis-like process and by activation with strong agonists. We previously showed that long-term treatment of monocytic cells with apoptosis-induced PM (PMap) promotes their differentiation into resident macrophages.
View Article and Find Full Text PDF