Saccharomycopsis yeasts are natural organic sulfur auxotrophs due to lack of genes required for the uptake and assimilation of sulfate/sulfite. Starvation for methionine induces a shift to a predatory, mycoparasitic life strategy that is unique amongst ascomycetous yeasts. Similar to fungal plant pathogens that separated from Saccharomycopsis more than 400 million years ago, a specialized infection structure called penetration peg is used for prey cell invasion.
View Article and Find Full Text PDFThe ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation.
View Article and Find Full Text PDFSaccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g.
View Article and Find Full Text PDFCommonly used fungal transformation protocols rely on the use of either electroporation or the lithium acetate/single strand carrier DNA/Polyethylene glycol/heat shock method. We have used the latter method previously in establishing DNA-mediated transformation in Saccharomycopsis schoenii, a CTG-clade yeast that exhibits necrotrophic mycoparasitism. To elucidate the molecular mechanisms of predation by Saccharomycopsis we aim at gene-function analyses to identify virulence-related pathways and genes.
View Article and Find Full Text PDF