It is still controversial whether cranial placodes and neural crest cells arise from a common precursor at the neural plate border or whether placodes arise from non-neural ectoderm and neural crest from neural ectoderm. Using tissue grafting in embryos of Xenopus laevis, we show here that the competence for induction of neural plate, neural plate border and neural crest markers is confined to neural ectoderm, whereas competence for induction of panplacodal markers is confined to non-neural ectoderm. This differential distribution of competence is established during gastrulation paralleling the dorsal restriction of neural competence.
View Article and Find Full Text PDFCranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm.
View Article and Find Full Text PDFThe expression of zebrafish hoxb3a and hoxb4a has been found to be mediated through five transcripts, hoxb3a transcripts I-III and hoxb4a transcripts I-II, driven by four promoters. A "master" promoter, located about 2 kb downstream of hoxb5a, controls transcription of a pre-mRNA comprising exon sequences of both genes. This unique gene structure is proposed to provide a novel mechanism to ensure overlapping, tissue-specific expression of both genes in the posterior hindbrain and spinal cord.
View Article and Find Full Text PDF