Sensors (Basel)
January 2024
Carbon sequestration in soils under agricultural use can contribute to climate change mitigation. Spatial-temporal soil organic carbon (SOC) monitoring requires more efficient data acquisition. This study aims to evaluate the potential of spectral on-the-go proximal measurements to serve these needs.
View Article and Find Full Text PDFNitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is known about the spatial patterns of N and P in the organic layer of mountainous landscapes. Therefore, the spatial distributions of N and P in both the organic layer and the A horizon were analyzed using a light detection and ranging (LiDAR) digital elevation model and vegetation metrics.
View Article and Find Full Text PDFTropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations.
View Article and Find Full Text PDF