Fluorescence is a widespread phenomenon found in animals, bacteria, fungi, and plants. In marine environments fluorescence has been proposed to play a role in physiological and behavioral responses. Many fluorescent proteins and other molecules have been described in jellyfish, corals, and fish.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
August 2024
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches.
View Article and Find Full Text PDFMarine bivalves are known to ingest microplastics, but information on the consequences for their physiological performance is limited. To investigate a potential exposure pathway that has not yet been addressed, we mimicked the resuspension of microplastics from the sediment in a laboratory exposure experiment. For this, we exposed the Asian green mussel Perna viridis to 4 concentrations (0mg/l, 21.
View Article and Find Full Text PDFIt is an open question whether adverse habitat conditions, characteristic for many anthropogenically impacted coastal habitats, can determine resistance to abiotic stress in populations of residing invertebrates. We tested experimentally for differences in stress tolerance between individuals of the Asian green mussel Perna viridis stemming from the heavily impacted Jakarta Bay and from two natural sites, Lada Bay and Pelabuhan Ratu, West Java. Mussel performance under hyposalinity and hypoxia was assessed in laboratory assays by measuring fitness-related response variables, e.
View Article and Find Full Text PDFIt is unclear whether habitat degradation correlates with tolerance of marine invertebrates to abiotic stress. We therefore tested whether resistance to climate change-related stressors differs between populations of the green mussel Perna viridis from a heavily impacted and a mostly pristine site in West Java, Indonesia. In laboratory experiments, we compared their oxygen consumption and mortality under lowered salinity (-13 and -18 units, both responses), hypoxia (0.
View Article and Find Full Text PDF