Many socio-affective behaviors, such as speech, are modulated by oxytocin. While oxytocin modulates speech perception, it is not known whether it also affects speech production. Here, we investigated effects of oxytocin administration and interactions with the functional rs53576 oxytocin receptor (OXTR) polymorphism on produced speech and its underlying brain activity.
View Article and Find Full Text PDFWilful movement requires neural control. Commonly, neural computations are thought to generate motor commands that bring the musculoskeletal system - that is, the plant - from its current physical state into a desired physical state. The current state can be estimated from past motor commands and from sensory information.
View Article and Find Full Text PDFComplex regional pain syndrome (CRPS) is characterized by inflammation and a failure of multimodal signal integration in the central nervous system (CNS). Central nervous system reorganization might account for sensory deficits, pain, and motor symptoms in CRPS, but it is not clear how motor control is affected by CNS mechanisms. The present study characterized the motor performance and related cortical activity of 16 CRPS patients and 16 control participants during the planning of visually guided unimanual grips, in patients with either the unaffected left or the affected right hand, and investigated resting-state sensorimotor coupling in MRI.
View Article and Find Full Text PDFProper speech production requires auditory speech feedback control. Models of speech production associate this function with the right cerebral hemisphere while the left hemisphere is proposed to host speech motor programs. However, previous studies have investigated only spectral perturbations of the auditory speech feedback.
View Article and Find Full Text PDFBoth hemispheres contribute to motor control beyond the innervation of the contralateral alpha motoneurons. The left hemisphere has been associated with higher-order aspects of motor control like sequencing and temporal processing, the right hemisphere with the transformation of visual information to guide movements in space. In the visuomotor context, empirical evidence regarding the latter has been limited though the right hemisphere's specialization for visuospatial processing is well-documented in perceptual tasks.
View Article and Find Full Text PDF