Publications by authors named "Mareike A Gann"

Background: Recent evidence suggests that hippocampal replay in humans support rapid motor memory consolidation during epochs of wakefulness interleaved with task practice.

Objectives/hypotheses: The goal of this study was to test whether such reactivation patterns can be modulated with experimental interventions and in turn influence fast consolidation. We hypothesized that non-invasive brain stimulation targeting hippocampal and striatal networks via the prefrontal cortex would influence brain reactivation and the rapid form of motor memory consolidation.

View Article and Find Full Text PDF

Memory consolidation, the process by which newly encoded and fragile memories become more robust, is thought to be supported by the reactivation of brain regions - including the hippocampus - during post-learning rest. While hippocampal reactivations have been demonstrated in humans in the declarative memory domain, it remains unknown whether such a process takes place after motor learning. Using multivariate analyses of task-related and resting state fMRI data, here we show that patterns of brain activity within both the hippocampus and striatum elicited during motor learning persist into post-learning rest, indicative of the reactivation of learning-related neural activity patterns.

View Article and Find Full Text PDF
Article Synopsis
  • Recent findings highlight the importance of reactivating newly formed memories during waking periods after learning to aid in memory consolidation.
  • The study explored how targeted memory reactivation (TMR) of motor skills during quiet rest can improve learning and involved brain imaging of 24 young adults.
  • Results showed that TMR led to faster learning for reactivated tasks, with increased brain activity in key motor areas and enhanced connections between the hippocampus and other brain regions during practice sessions.
View Article and Find Full Text PDF

Motor sequence learning (MSL) is supported by dynamical interactions between hippocampal and striatal networks that are thought to be orchestrated by the prefrontal cortex. In the present study, we tested whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex (DLPFC) prior to MSL can modulate multivoxel response patterns in the stimulated cortical area, the hippocampus and the striatum. Response patterns were assessed with multivoxel correlation structure analyses of functional magnetic resonance imaging data acquired during task practice and during resting-state scans before and after learning/stimulation.

View Article and Find Full Text PDF

Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA).

View Article and Find Full Text PDF

While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks.

View Article and Find Full Text PDF

Previous research has shown that targeted memory reactivation (TMR) protocols using acoustic or olfactory stimuli can boost motor memory consolidation. While somatosensory information is crucial for motor control and learning, the effects of somatosensory TMR on motor memory consolidation remain elusive. Here, healthy young adults (n = 28) were trained on a sequential serial reaction time task and received, during the offline consolidation period that followed, sequential electrical stimulation of the fingers involved in the task.

View Article and Find Full Text PDF

Transcranial magnetic stimulation studies have highlighted that corticospinal excitability is increased during observation of object lifting, an effect termed "motor resonance." This facilitation is driven by movement features indicative of object weight, such as object size or observed movement kinematics. Here, we investigated in 35 humans (23 females) how motor resonance is altered when the observer's weight expectations, based on visual information, do not match the actual object weight as revealed by the observed movement kinematics.

View Article and Find Full Text PDF

Recent research has demonstrated that memory-consolidation processes can be accelerated if newly learned information is consistent with preexisting knowledge. Until now, investigations of this fast integration of new information into memory have focused on the declarative and perceptual systems. We employed a unique manipulation of a motor-sequence-learning paradigm to examine the effect of experimentally acquired memory on the learning of new motor information.

View Article and Find Full Text PDF