Understanding the mechanisms promoting chromosomal translocations of the rearranging receptor loci in leukemia and lymphoma remains incomplete. Here we show that leukemias induced by aberrant activation of β-catenin in thymocytes, which bear recurrent translocations, depend on Tcf-1. The DNA double strand breaks (DSBs) in the site of the translocation are Rag-generated, whereas the DSBs are not.
View Article and Find Full Text PDFThymocyte development requires a complex orchestration of multiple transcription factors. Ablating either TCF-1 or HEB in CD4CD8 thymocytes elicits similar developmental outcomes including increased proliferation, decreased survival, and fewer late Tcra rearrangements. Here, we provide a mechanistic explanation for these similarities by showing that TCF-1 and HEB share ~7,000 DNA-binding sites genome wide and promote chromatin accessibility.
View Article and Find Full Text PDFDNA polymerase stalling activates the ATR checkpoint kinase, which in turn suppresses fork collapse and breakage. Herein, we describe use of ATR inhibition (ATRi) as a means to identify genomic sites of problematic DNA replication in murine and human cells. Over 500 high-resolution ATR-dependent sites were ascertained using two distinct methods: replication protein A (RPA)-chromatin immunoprecipitation (ChIP) and breaks identified by TdT labeling (BrITL).
View Article and Find Full Text PDFCohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases.
View Article and Find Full Text PDF50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps.
View Article and Find Full Text PDFActivation-induced cytidine deaminase (AID) converts cytosine into uracil to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes. In addition, this enzyme produces DNA lesions at off-target sites that lead to mutations and chromosome translocations. However, AID is mostly cytoplasmic, and how and exactly when it accesses nuclear DNA remains enigmatic.
View Article and Find Full Text PDFThe antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome.
View Article and Find Full Text PDFThe density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2014
Deregulated activation of β-catenin in cancer has been correlated with genomic instability. During thymocyte development, β-catenin activates transcription in partnership with T-cell-specific transcription factor 1 (Tcf-1). We previously reported that targeted activation of β-catenin in thymocytes (CAT mice) induces lymphomas that depend on recombination activating gene (RAG) and myelocytomatosis oncogene (Myc) activities.
View Article and Find Full Text PDFIkaros is a critical regulator of lymphocyte development and homeostasis; thus, understanding its transcriptional regulation is important from both developmental and clinical perspectives. Using a mouse transgenic reporter approach, we functionally characterized a network of highly conserved cis-acting elements at the Ikzf1 locus. We attribute B-cell and myeloid but not T-cell specificity to the main Ikzf1 promoter.
View Article and Find Full Text PDFBcl11b is a T-cell specific gene in hematopoiesis that begins expression during T-lineage commitment and is required for this process. Aberrant expression of BCL11B or proto-oncogene translocation to the vicinity of BCL11B can be a contributing factor in human T-ALL. To identify the mechanism that controls its distinctive T-lineage expression, we corrected the identified Bcl11b transcription start site and mapped a cell-type-specific differentially methylated region bracketing the Bcl11b promoter.
View Article and Find Full Text PDFThe "CTCF code" hypothesis posits that CTCF pleiotropic functions are driven by recognition of diverse sequences through combinatorial use of its 11 zinc fingers (ZFs). This model, however, is supported by in vitro binding studies of a limited number of sequences. To study CTCF multivalency in vivo, we define ZF binding requirements at ∼50,000 genomic sites in primary lymphocytes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2011
Although transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA-binding protein T-cell factor 1 (Tcf-1), a T-cell-specific mediator of Wnt signaling.
View Article and Find Full Text PDFCell fate depends on the interplay between chromatin regulators and transcription factors. Here we show that activity of the Mi-2β nucleosome-remodeling and histone-deacetylase (NuRD) complex was controlled by the Ikaros family of lymphoid lineage-determining proteins. Ikaros, an integral component of the NuRD complex in lymphocytes, tethered this complex to active genes encoding molecules involved in lymphoid differentiation.
View Article and Find Full Text PDFCyclin-dependent kinase-6 (CDK6) is required for early thymocyte development and tumorigenesis. To mechanistically dissect the role of CDK6 in thymocyte development, we generated and analyzed mutant knock-in mice and found that mice expressing a kinase-dead Cdk6 allele (Cdk6(K43M)) had a pronounced reduction in thymocytes and hematopoietic stem cells and progenitor cells (Lin⁻Sca-1⁺c-Kit⁺ [LSK]). In contrast, mice expressing the INK4-insensitive, hyperactive Cdk6(R31C) allele displayed excess proliferation in LSK and thymocytes.
View Article and Find Full Text PDFInvariant V alpha 14 bearing natural killer T cells (iNKT) cells constitute a subset of lymphocytes that recognize lipid-based ligands presented by the non-classical MHC class I-like molecule CD1d and responds with rapid cytokine production. Despite their multiple implications in regulating immune responses, pertaining to cancer and auto-immunity, the molecular requirements for their development in the thymus are poorly understood. Here we discuss recent evidence that c-Myc mediates an intrathymic proliferation wave immediately following agonist selection of iNKT cells that is vital for the generation of mature iNKT cells in vivo.
View Article and Find Full Text PDFThymic maturation of T cells depends on the intracellular interpretation of alphabetaTCR signals by processes that are poorly understood. In this study, we report that beta-catenin/Tcf signaling was activated in double-positive thymocytes in response to alphabetaTCR engagement and impacted thymocyte selection. TCR engagement combined with activation of beta-catenin signaled thymocyte deletion, whereas Tcf-1 deficiency rescued from negative selection.
View Article and Find Full Text PDFThe molecular requirements for invariant Valpha14-bearing natural killer T cells (iNKT) in the thymus are poorly understood. A minute population of approximately 500 newly selected CD69(+)CD24(+) stage 0 (ST0) iNKT cells gives rise to approximately 100 times more CD44(neg/lo)CD24(-) stage 1 (ST1) cells, which then generate similar frequencies of CD44(hi)CD24(-) stage 2 (ST2) and mature iNKT cells. Although the increased number of ST1 compared with ST0 cells indicates the initiation of a proliferation wave in the very early stages of iNKT cell development, details about the controlling mechanism are currently lacking.
View Article and Find Full Text PDFCyclin-dependent kinase 6 (CDK6) promotes cell cycle progression and is overexpressed in human lymphoid malignancies. To determine the role of CDK6 in development and tumorigenesis, we generated and analyzed knockout mice. Cdk6-deficient mice show pronounced thymic atrophy due to reduced proliferative fractions and concomitant transitional blocks in the double-negative stages.
View Article and Find Full Text PDFThe fireworks from the spectacular emergence of Notch as the protagonist in the etiology of T-ALL are not likely to end any time soon. Indeed, in this issue of , Sulis and colleagues describe yet another sophisticated mechanism by which ligand-independent activation of NOTCH1 is achieved in T-ALL. NOTCH1-activating mutations mark more than half of all T-ALL cases, underscoring the fundamental role of aberrant NOTCH1 signaling in this disease.
View Article and Find Full Text PDFMicrotubule spindle assembly in mitosis is stimulated by Ran.GTP, which is generated along condensed chromosomes by the guanine nucleotide exchange factor (GEF) RCC1. This relationship suggests that similar activities might modulate other microtubule structures.
View Article and Find Full Text PDFPre-TCR signals regulate the transition of the double-negative (DN) 3 thymocytes to the DN4, and subsequently to the double-positive (DP) stage. In this study, we show that pre-TCR signals activate Akt and that pharmacological inhibition of the PI3K/Akt pathway, or combined ablation of Akt1 and Akt2, and to a lesser extent Akt1 and Akt3, interfere with the differentiation of DN3 and the accumulation of DP thymocytes. Combined ablation of Akt1 and Akt2 inhibits the proliferation of DN4 cells, while combined ablation of all Akt isoforms also inhibits the survival of all the DN thymocytes.
View Article and Find Full Text PDFActivation of beta-catenin has been causatively linked to the etiology of colon cancer. Conditional stabilization of this molecule in pro-T cells promotes thymocyte development without the requirement for pre-TCR signaling. We show here that activated beta-catenin stalls the developmental transition from the double-positive (DP) to the single-positive (SP) thymocyte stage and predisposes DP thymocytes to transformation.
View Article and Find Full Text PDF