Publications by authors named "Maree Faux"

Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.

View Article and Find Full Text PDF

(human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated.

View Article and Find Full Text PDF

Unlabelled: Adenomatous polyposis coli (APC) truncations occur in many colorectal cancers and are often associated with immune infiltration. The aim of this study was to determine whether a combination of Wnt inhibition with anti-inflammatory (sulindac) and/or proapototic (ABT263) drugs can reduce colon adenomas. and doublecortin-like kinase 1 () mice were exposed to dextran sulphate sodium (DSS) in their drinking water to promote the formation of colon adenomas.

View Article and Find Full Text PDF

Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the (paired), , (orthodenticle), (genetic screened), and (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is driven by a small set of oncogenic and tumour suppressor mutations. However, different combinations of mutations often lead to poor tumour responses to individual anticancer drugs. We have investigated the antiproliferative and in vitro cytotoxic activity of pair-wise combinations of inhibitors which target specific signalling pathways in colon cancer cells.

View Article and Find Full Text PDF

Cell embedment into a solid support matrix is considered essential for the culture of intestinal epithelial organoids and tumoroids, but this technique presents challenges that impede scalable culture expansion, experimental manipulation, high-throughput screening and diagnostic applications. We have developed a low-viscosity matrix (LVM) suspension culture method that enables efficient establishment and propagation of organoids and tumoroids from the human large intestine. Organoids and tumoroids cultured in LVM suspension recapitulate the morphological development observed in solid matrices, with tumoroids reflecting the histological features and genetic heterogeneity of primary colorectal cancers.

View Article and Find Full Text PDF

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients.

View Article and Find Full Text PDF

The adenomatous polyposis coli (APC) tumor suppressor protein is associated with the regulation of Wnt signaling; however, APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell-cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell-cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell-cell adhesion, whereas the expression of negative regulators of E-cadherin was decreased.

View Article and Find Full Text PDF

Truncating mutations in the tumour suppressor gene APC occur frequently in colorectal cancers and result in the deregulation of Wnt signalling as well as changes in cell-cell adhesion. Using quantitative imaging based on the detection of membrane-associated E-cadherin, we undertook a protein coding genome-wide siRNA screen to identify genes that regulate cell surface E-cadherin in the APC-defective colorectal cancer cell line SW480. We identified a diverse set of regulators of E-cadherin that offer new insights into the regulation of cell-cell adhesion, junction formation and genes that regulate proliferation or survival of SW480 cells.

View Article and Find Full Text PDF

Mixed lineage kinase domain-like (MLKL) is the terminal protein in the pro-inflammatory necroptotic cell death program. RIPK3-mediated phosphorylation is thought to initiate MLKL oligomerization, membrane translocation and membrane disruption, although the precise choreography of events is incompletely understood. Here, we use single-cell imaging approaches to map the chronology of endogenous human MLKL activation during necroptosis.

View Article and Find Full Text PDF

A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how the renin-angiotensin system (RAS) affects intestinal inflammation and fibrosis through experiments with human colonic myofibroblasts and analysis of patients with inflammatory bowel disease (IBD).
  • Results showed that Angiotensin (Ang) 1-7 decreased cell proliferation and collagen secretion in these myofibroblasts, while Ang II had the opposite effects, emphasizing RAS's role in fibrosis.
  • Patients with IBD exhibited higher levels of certain RAS components, and those treated with ACE inhibitors or angiotensin receptor blockers had better outcomes, suggesting that targeting the RAS may help improve IBD management.
View Article and Find Full Text PDF

The adenomatous polyposis coli (APC) tumour suppressor gene is mutated in about 80% of colorectal cancers (CRC) Brannon et al. (2014) [1]. APC is a large multifunctional protein that regulates many biological functions including Wnt signalling (through the regulation of beta-catenin stability) Reya and Clevers (2005) [2], cell migration Kroboth et al.

View Article and Find Full Text PDF

Most colon cancers arise from somatic mutations in the tumor suppressor gene APC (adenomatous polyposis coli), and these mutations cause constitutive activation of the Wnt-to-β-catenin pathway in the intestinal epithelium. Because Wnt-β-catenin signaling is required for homeostasis and regeneration of the adult intestinal epithelium, therapeutic targeting of this pathway is challenging. We found that genetic activation of the cytokine-stimulated pathway mediated by the receptor gp130, the associated Jak (Janus kinase) kinases, and the transcription factor Stat3 (signal transducer and activator of transcription 3) was required for intestinal regeneration in response to irradiation-induced damage in wild-type mice and for tumorigenesis in Apc-mutant mice.

View Article and Find Full Text PDF

Background: The adenomatous polyposis coli (APC) tumour suppressor gene encodes a 2843 residue (310 kDa) protein. APC is a multifunctional protein involved in the regulation of β-catenin/Wnt signalling, cytoskeletal dynamics and cell adhesion. APC mutations occur in most colorectal cancers and typically result in truncation of the C-terminal half of the protein.

View Article and Find Full Text PDF

The stem cells (SCs) at the bottom of intestinal crypts tightly contact niche-supporting cells and fuel the extraordinary tissue renewal of intestinal epithelia. Their fate is regulated stochastically by populational asymmetry, yet whether asymmetrical fate as a mode of SC division is relevant and whether the SC niche contains committed progenitors of the specialized cell types are under debate. We demonstrate spindle alignments and planar cell polarities, which form a novel functional unit that, in SCs, can yield daughter cell anisotropic movement away from niche-supporting cells.

View Article and Find Full Text PDF

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are common in both inherited and sporadic forms of colorectal cancer (CRC), and are associated with dysregulated Wnt signaling. Colon carcinoma SW480 cells restored with stable expression of wild-type APC (SW480APC cells) exhibit attenuated Wnt signaling, and reduced tumorigenicity, including increased cell adhesion. We performed a comparative proteomic analysis of exosomes isolated from SW480 and SW480APC cells to examine the effects of restored APC on exosome protein expression.

View Article and Find Full Text PDF

β-catenin is a member of the armadillo repeat family of proteins and has important functions in cell-cell adhesion and Wnt signalling. Different protein species of β-catenin have been shown to exist in the cell and the relative proportions of these species are altered upon stimulation of cells with Wnt-3a (Gottardi and Gumbiner, 2004). In order to determine whether posttranslational modifications (PTMs) of β-catenin underlie these different protein species, we have used 2DE separation and immunoblotting with an antibody specific for β-catenin.

View Article and Find Full Text PDF

β-catenin is a signaling protein with diverse functions in cell adhesion and Wnt signaling. Although β-catenin has been shown to participate in many protein-protein interactions, it is not clear which combinations of β-catenin-interacting proteins form discrete complexes. We have generated a novel antibody, termed 4B3, which recognizes only a small subset of total cellular β-catenin.

View Article and Find Full Text PDF

In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the β-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of β-catenin is contrasted with roles for phospho-β-catenin in the activation of transcription, cell adhesion and migration.

View Article and Find Full Text PDF

Studies employing mouse models have identified crypt base and position +4 cells as strong candidates for intestinal epithelial stem cells. Equivalent cell populations are thought to exist in the human intestine; however robust and specific protein markers are lacking. Here, we show that in the human small and large intestine, PHLDA1 is expressed in discrete crypt base and some position +4 cells.

View Article and Find Full Text PDF

Background: The APC tumour suppressor functions in several cellular processes including the regulation of β-catenin in Wnt signalling and in cell adhesion and migration.

Findings: In this study, we establish that in epithelial cells N-terminally phosphorylated β-catenin specifically localises to several subcellular sites including cell-cell contacts and the ends of cell protrusions. N-terminally phosphorylated β-catenin associates with E-cadherin at adherens junctions and with APC in cell protrusions.

View Article and Find Full Text PDF

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants.

View Article and Find Full Text PDF

Cells in tissues do not exist as isolated entities but are part of the three-dimensional tissue architecture. Consequently, some aspects of cell behaviour cannot be mimicked by simple in vitro monolayer culture systems. Moreover, cell shape and behaviour is not rigid but is dynamic and can be regulated by intrinsic and extrinsic factors.

View Article and Find Full Text PDF

Developmental morphogenesis relies on cell transitions between epithelial and mesenchymal states. Colorectal cancer (CRC) progression can also be described as 'morphogenesis' as it involves epithelial-mesenchymal transition (EMT), whereby tumour cells become more invasive and metastatic. Subsequently, the disseminated tumour cells must undergo a reverse transition (MET), as the pathology of most primary tumours is re-capitulated by their established metastases.

View Article and Find Full Text PDF