Publications by authors named "Mardi J Nenni"

The establishment of left-right patterning in mice occurs at a transient structure called the embryonic node or left-right organizer (LRO). Previous analysis of the LRO has proven challenging due to the small cell number and transient nature of this structure. Here, we seek to overcome these difficulties to define the transcriptome of the LRO.

View Article and Find Full Text PDF

Background: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease.

Results: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease.

View Article and Find Full Text PDF

Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes.

View Article and Find Full Text PDF

At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian to model human disease. The online resource, Xenbase, enables human disease modeling by curating the literature published in PubMed and integrating these data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO).

View Article and Find Full Text PDF