Publications by authors named "Marda Scott-Jorgensen"

alpha1-Antitrypsin (AAT) deficiency is a single-gene disorder in which a mutation in the AAT (approved symbol SERPINA1) gene (PI*Z) leads to misfolding of the protein, loss of the protective antiprotease effect of AAT for the lungs, and a toxic effect on hepatocytes. Optimal therapy for AAT deficiency will require a high percentage of hepatocyte transduction to be effective for liver and lung disease. Recently, rAAV genomes pseudotyped with capsids from serotypes 7 and 8 showed efficient hepatic transduction.

View Article and Find Full Text PDF

Islet transplantation represents a potential cure for type 1 diabetes, yet persistent autoimmune and allogeneic immunities currently limit its clinical efficacy. For alleviating the autoimmune destruction of transplanted islets, newly diagnosed NOD mice were provided a single intramuscular injection of recombinant adeno-associated viral vector encoding murine IL-10 (rAAV-IL-10) 4 weeks before renal capsule delivery of 650 syngeneic islets. A dose-dependent protection of islet grafts was observed.

View Article and Find Full Text PDF

Previous studies suggest that therapeutic expression of interleukin (IL)-4 by islet cells improves their efficacy in transplantation models directed at reversing type 1 diabetes. We investigated the effects of introducing IL-4 into islets with recombinant adeno-associated virus (rAAV) on the reversal of hyperglycemia in a syngeneic marginal islet mass transplantation model. C57BL/6 islets were mock-transduced or transduced with rAAV expressing murine IL-4 (rAAV-IL-4) or rAAV expressing green fluorescent protein (rAAV-GFP) before transplantation of a marginal mass into diabetic mice.

View Article and Find Full Text PDF

We performed a series of studies in baboons to evaluate the safety of intramuscular administration of rAAV vector expressing the alpha-1 antitrypsin (AAT) gene (SERPINA1) in a nonhuman primate model. Initial experiments performed with an rAAV vector expressing the human SERPINA1 gene (at doses of up to 5 x 10(12) vector genomes/kg) resulted in the generation of anti-human AAT antibodies, which correlated with a loss of detectable transgene expression. Subsequent studies made use of the baboon SERPINA1 gene tagged with a short (10-amino-acid) c-myc tag.

View Article and Find Full Text PDF