GSHO 2096 is a near isogenic barley line with extremely high grain β-amylase activity, a desirable trait in the malting and brewing industry. High levels of grain β-amylase activity are caused by a surge in endosperm-specific β-amylase (Bmy1) gene expression during the early stages of grain development with high expression levels persisting throughout development. Origins of the high β-amylase activity trait are perplexing considering GSHO 2096 is not supposed to have grain β-amylase activity.
View Article and Find Full Text PDFBarley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.
View Article and Find Full Text PDFBiol Methods Protoc
November 2023
Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) followed by the 2 method is the most common way to measure transcript levels for relative gene expression assays. The quality of an RT-qPCR assay is dependent upon the identification and validation of reference genes to normalize gene expression data. The so-called housekeeping genes are commonly used as internal reference genes because they are assumed to be ubiquitously expressed at stable levels.
View Article and Find Full Text PDFThe present study aimed to establish an early model of the malting barley transcriptome, which describes the expression of genes and their ontologies, identify the period during malting with the largest dynamic shift in gene expression for future investigation, and to determine the expression patterns of all starch degrading enzyme genes relevant to the malting and brewing industry. Large dynamic increases in gene expression occurred early in malting with differential expressed genes enriched for cell wall and starch hydrolases amongst many malting related categories. Twenty-five of forty starch degrading enzyme genes were differentially expressed in the malting barley transcriptome including eleven α-amylase genes, six β-amylase genes, three α-glucosidase genes, and all five starch debranching enzyme genes.
View Article and Find Full Text PDFExpression of hordeins and β-amylase during barley grain development is important in determining malting quality parameters that are controlled by protein and malt enzyme levels. The relationship between protein and enzyme levels is confounding because, in general, protein and malt enzyme activity are positively correlated and the malting and brewing industries demand relatively low levels of protein and relatively high levels of enzymes. Separation of these traits is desirable because high protein levels are one of the primary causes of barley not meeting malt quality standards.
View Article and Find Full Text PDFReverse transcription quantitative polymerase chain reaction (RT-qPCR) is a popular method for measuring transcript abundance. The most commonly used method of interpretation is relative quantification and thus necessitates the use of normalization controls (i.e.
View Article and Find Full Text PDFTwo barley (Hordeum vulgare L.) β-amylase genes (Bmy1 and Bmy2) were studied during the late maturation phase of grain development in four genotypes. The Bmy1 and Bmy2 DNA and amino acid sequences are extremely similar.
View Article and Find Full Text PDFThe objective of this study was to determine if developing barley (Hordeum vulgare L.) seeds had differences in β-amylase 1 (Bmy1) mRNA accumulation, β-amylase (EC 3.2.
View Article and Find Full Text PDF