Optical (molecular) imaging can benefit from a combination of the high signal-to-background ratio of activatable fluorescence imaging with the high specificity of luminescence lifetime imaging. To allow for this combination, both imaging techniques were integrated in a single imaging agent, a so-called activatable lifetime imaging agent. Important in the design of this imaging agent is the use of two luminophores that are tethered by a specific peptide with a hairpin-motive that ensured close proximity of the two while also having a specific amino acid sequence available for enzymatic cleavage by tumor-related MMP-2/9.
View Article and Find Full Text PDFIn this proof-of-concept study, a new activatable imaging agent based on two luminophores and two different quenching mechanisms is reported. Both partial and total activation of the luminescence signal can be achieved, either in solution or in vitro. Bond cleavage makes the compound suitable for luminescence lifetime imaging.
View Article and Find Full Text PDFThe conversion of γ-valerolactone (GVL) in three atom-efficient steps to the important polymer precursor ε-caprolactam is reported. The bio-based GVL can be converted to a mixture of isomeric methyl pentenoates (MP) via trans-esterification with methanol with 94% yield (ratio of 3-MP/4-MP=3:1); subsequent aminolysis with ammonia leads to a mixture of pentenamides (PA) almost quantitatively (99% conversion). The resulting pentenamides are ultimately converted into ε-caprolactam via a rhodium-catalyzed intramolecular hydroamidomethylation reaction, comprising an initial hydroformylation of the alkene moiety of PA and subsequent ring-closing reductive amidation of the resulting aldehyde with the amide functionality.
View Article and Find Full Text PDFUnlabelled: In this work we present a detailed study on the influence of surface modifications for luminescent silver (Ag) clusters. Ag clusters (25 atoms) capped with dihydrolipoic acid show a distinct absorbance spectrum with several sharp transitions, and relative broad deep red luminescence with a quantum yield of 5% combined with a remarkably long luminescence lifetime of ~3 μs at room temperature. Both pH and the presence of coordinating ligands influence the absorbance spectra and fluorescence intensity.
View Article and Find Full Text PDF