Xolography is a volumetric 3D printing technique utilizing intersecting light beams within a volume of photopolymer for a spatially controlled photopolymerization. Unlike layer-based methods, Xolography creates structures continuously within a closed photopolymer vat, eliminating the prevalent need for support structures and allowing full geometrical freedom at high printing speeds. The volumetric working principle does not rely on gravity, making Xolography an outstanding technology for additive manufacturing under microgravity conditions as illustrated in a set of experiments during a parabolic flight campaign.
View Article and Find Full Text PDFAdditive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer-by-layer polymerization processes, leading to an inherent trade-off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light-based additive manufacturing.
View Article and Find Full Text PDFThe range of applications for additive manufacturing is expanding quickly, including mass production of athletic footwear parts, dental ceramics and aerospace components as well as fabrication of microfluidics, medical devices, and artificial organs. The light-induced additive manufacturing techniques used are particularly successful owing to their high spatial and temporal control, but such techniques still share the common motifs of pointwise or layered generation, as do stereolithography, laser powder bed fusion, and continuous liquid interface production and its successors. Volumetric 3D printing is the next step onward from sequential additive manufacturing methods.
View Article and Find Full Text PDFThis randomized, single-blind, placebo-controlled study investigated the effect of ivabradine, a novel heart rate-lowering agent, on echocardiographic indices of left ventricular (LV) systolic function in patients with regional (coronary artery disease) or global (cardiomyopathy) LV dysfunction. Patients were randomized on an unequal basis to receive ivabradine 0.25 mg/kg (n = 31) or placebo (n = 13) by intravenous infusion.
View Article and Find Full Text PDF