Expectation of a future stimulus increases the preparedness to act once it actually appears and results in reduced latency of the appropriate motor response. Real world events are uncertain both spatially and/or temporally but this uncertainty could itself be expected. In the presence of both expected spatial and temporal uncertainty, which one should be prioritized by the motor system could depend on the context.
View Article and Find Full Text PDFSubjective uncertainty arises because the estimation of the timing of an event into the future is error prone. This impact of stimulus-bound uncertainty on movement preparation has often been investigated using reaction time tasks where a warning stimulus (WS) predicts the occurrence of a "go" signal. The timing of the "go" signal can be chosen from a particular probability distribution with a given variance or uncertainty.
View Article and Find Full Text PDFAnticipatory actions require to keep track of elapsed time and inhibitory control. These cognitive functions could be impacted in Parkinson's disease (iPD). To test this hypothesis, a saccadic reaction time task was used where a visual warning stimulus (WS) predicted the occurrence of an imperative one (IS) appearing after a short delay.
View Article and Find Full Text PDFExpected surprise, defined as the anticipation of uncertainty associated with the occurrence of a future event, plays a major role in gaze shifting and spatial attention. In the present study, we analyzed its impact on oculomotor behavior. We hypothesized that the occurrence of anticipatory saccades could decrease with increasing expected surprise and that its influence on visually-guided responses could be different given the presence of sensory information and perhaps competitive attentional effects.
View Article and Find Full Text PDFRationale: Ketamine, a well-known general dissociative anesthetic agent that is a non-competitive antagonist of the N-methyl-D-aspartate receptor, perturbs the perception of elapsed time and the expectation of upcoming events.
Objective: The objective of this study was to determine the influence of ketamine on temporal expectation in the rhesus monkey.
Methods: Two rhesus monkeys were trained to make a saccade between a central warning stimulus and an eccentric visual target that served as imperative stimulus.
Front Behav Neurosci
November 2019
Patient suffering of major depressive disorder (MDD) often complain that subjective time seems to "drag" with respect to physical time. This may point toward a generalized dysfunction of temporal processing in MDD. In the present study, we investigated temporal preparation in MDD.
View Article and Find Full Text PDFIn a rapidly changing environment, we often know when to do something before we have to do it. This preparation in the temporal domain is based on a 'perception' of elapsed time and short-term memory of previous stimulation in a similar context. These functions could be perturbed in Parkinson's disease.
View Article and Find Full Text PDFIf a visual object of interest suddenly starts to move, we will try to follow it with a smooth movement of the eyes. This response aims to reduce image motion on the retina that could blur visual perception. In recent years, our knowledge of the neural control of smooth pursuit initiation has sharply increased.
View Article and Find Full Text PDFPsychopharmacology (Berl)
October 2015
Rationale: It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade.
View Article and Find Full Text PDFThe passage of time can be estimated either explicitly, e.g. before leaving home in the morning, or implicitly, e.
View Article and Find Full Text PDFWhen two objects such as billiard balls collide, observers perceive that the action of one caused the motion of the other. We have previously shown (Badler, Lefèvre, & Missal, 2010) that this extends to the oculomotor domain: subjects make more predictive movements in the expected direction of causal motion than in a noncausal direction. However, predictive oculomotor and reactive psychophysical responses have never been directly compared.
View Article and Find Full Text PDFImpulsivity is the tendency to act without forethought. It is a personality trait commonly used in the diagnosis of many psychiatric diseases. In clinical practice, impulsivity is estimated using written questionnaires.
View Article and Find Full Text PDFFeeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter.
View Article and Find Full Text PDFHumans are very sensitive to the presence of other living persons or animals in their surrounding. Human actions can readily be perceived, even in a noisy environment. We recently demonstrated that biological motion, which schematically represents human motion, influences smooth pursuit eye movements during the initiation period (Orban de Xivry, Coppe, Lefèvre, & Missal, 2010).
View Article and Find Full Text PDFWhen viewing one object move after being struck by another, humans perceive that the action of the first object "caused" the motion of the second, not that the two events occurred independently. Although established as a perceptual and linguistic concept, it is not yet known whether the notion of causality exists as a fundamental, preattentional "Gestalt" that can influence predictive motor processes. Therefore, eye movements of human observers were measured while viewing a display in which a launcher impacted a tool to trigger the motion of a second "reaction" target.
View Article and Find Full Text PDFPresenting a few dots moving coherently on a screen can yield to the perception of human motion. This perception is based on a specific network that is segregated from the traditional motion perception network and that includes the superior temporal sulcus (STS). In this study, we investigate whether this biological motion perception network could influence the smooth pursuit response evoked by a point-light walker.
View Article and Find Full Text PDFVisually guided catch-up saccades during the pursuit of a moving target are highly influenced by smooth pursuit performance. For example, the decision to execute a saccade and its amplitude is driven by the difference in velocity between the eye and the target. In previous studies, we have demonstrated that the predictive saccades that occur during the blanking of the moving target compensate for the variability of the smooth pursuit response.
View Article and Find Full Text PDFThe ability to predict upcoming events is important to compensate for relatively long sensory-motor delays. When stimuli are temporally regular, their prediction depends on a representation of elapsed time. However, it is well known that the allocation of attention to the timing of an upcoming event alters this representation.
View Article and Find Full Text PDFMoving objects are often occluded by neighboring objects. In order for the eye to smoothly pursue a moving object that is transiently occluded, a prediction of its trajectory is necessary. For targets moving on a linear path, predictive eye velocity can be regulated on the basis of target motion before and after the occlusions.
View Article and Find Full Text PDFExpectation of upcoming events is an essential cognitive function on which anticipatory actions are based. The neuronal basis of this prospective representation is poorly understood. We trained rhesus monkeys in a smooth-pursuit task in which the direction of upcoming target motion was indicated using a color cue.
View Article and Find Full Text PDFNeural regions in the dorsomedial frontal cortex (DMFC), including the supplementary eye field (SEF) and the presupplementary motor area (pre-SMA), are likely candidates for generating top-down control of saccade target selection. To investigate this, we applied electrical microstimulation to these structures while saccades were being planned to visual targets. Stimulation administered to superficial and lateral DMFC sites that were within or close to the SEF delayed ipsilateral and facilitated contralateral saccades.
View Article and Find Full Text PDFThe timing of an upcoming event depends on two factors: its temporal position, proximal or distal with respect to the present moment, and the unavoidable stochastic variability around this temporal position. We searched for a general mechanism that could describe how these two factors influence the anticipation of an upcoming event in an oculomotor task. Monkeys were trained to pursue a moving target with their eyes.
View Article and Find Full Text PDFThe influence of position and motion signals on saccades was studied in two dimensions (2D) using a double step-ramp paradigm. We showed the presence of a predictive component in 2D catch-up saccade programming that is based on motion signals and influences both saccade amplitude and orientation. Interestingly, a significant proportion of catch-up saccades was characterized by a large curvature or a sudden change of direction in midflight for large values of retinal slip.
View Article and Find Full Text PDFWhen objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error.
View Article and Find Full Text PDF