Dissemination of public health information plays an essential role in communicable disease control and prevention. However, widespread and repeated messaging could become counterproductive if it leads to avoidance and disengagement due to message fatigue. Americans have been inundated with accurate and inaccurate COVID-19 information from myriad sources since the start of the pandemic.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP.
View Article and Find Full Text PDFIn the confocal mode, Raman microspectroscopy can profile the biochemical content of biological cells at a subcellular level, and any changes to it by exogenous agents, such as therapeutic drugs or toxicants. As an exploration of the potential of the technique as a high-content, label-free analysis technique, this report reviews work to monitor the spectroscopic signatures associated with the uptake and response pathways of commercial chemotherapeutic agents and polymeric nanoparticles by human lung cells. It is demonstrated that the signatures are reproducible and characteristic of the cellular event, and can be used, for example, to identify the mode of action of the agent as well as the subsequent cell death pathway, and even mechanisms of cellular resistance.
View Article and Find Full Text PDFThe acceleration of nanomaterials research has brought about increased demands for rapid analysis of their bioactivity, in a multi-parametric fashion, to minimize the gap between potential applications and knowledge of their toxicological properties. The potential of Raman microspectroscopy for the analysis of biological systems with the aid of multivariate analysis techniques has been demonstrated. In this study, an overview of recent efforts towards establishing a 'label-free high content nanotoxicological assessment technique' using Raman microspectroscopy is presented.
View Article and Find Full Text PDFNanotoxicology has become an established area of science due to growing concerns over the production and potential use of nanomaterials in a wide-range of areas from pharmaceutics to nanomedicine. Although different cytotoxicity assays have been developed and are widely used to determine the toxicity of nanomaterials, the production of multi-parametric information in a rapid and non-invasive way is still challenging, when the amount and diversity of physicochemical properties of nanomaterials are considered. High content screening can provide such analysis, but is often prohibitive in terms of capital and recurrent costs in academic environments.
View Article and Find Full Text PDFThe mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly(amidoamine) dendrimers generations 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-buthionine-(S,R)-sulfoximine (BSO).
View Article and Find Full Text PDFThe need for rapid and cost-effective pre-screening protocols of the toxicological response of the vast array of emerging nanoparticle types is apparent and the emerging consensus on the paradigm of oxidative stress by generation of intracellular reactive oxygen species as a primary source of the toxic response suggests the development of acellular assays to screen for nanoparticle surface reactivity. This study explores the potential of the monoamine oxidase A (MAO-A) enzyme-based assay with polymeric dendrimers as cofactors and serotonin as substrate, which generates H2O2, quantified by the conversion of the Carboxy-H2DCFDA dye to its fluorescent form. A range of generations of both PAMAM (poly(amidoamine)) (G4-G7) and PPI (poly(propylene imine)) (G0-G4) dendritic polymer nanoparticles are used as test particles to validate the quantitative nature of the assay response as a function of nanoparticle physico-chemical properties.
View Article and Find Full Text PDFA phenomenological rate equation model is constructed to numerically simulate nanoparticle uptake and subsequent cellular response. Polyamidoamine dendrimers (generations 4-6) are modelled and the temporal evolution of the intracellular cascade of; increased levels of reactive oxygen species, intracellular antioxidant species, caspase activation, mitochondrial membrane potential decay, tumour necrosis factor and interleukin generation is simulated, based on experimental observations. The dose and generation dependence of several of these response factors are seen to well represent experimental observations at a range of time points.
View Article and Find Full Text PDFThe ldh gene of Corynebacterium glutamicum ATCC 13032 (gene symbol cg3219, encoding a 314 residue NAD+-dependent L-(+)-lactate dehydrogenase, EC 1.1.1.
View Article and Find Full Text PDF