Publications by authors named "Marcus Koppert"

In our previous studies, we showed that the both realistic and analytical computational models of neural dynamics can display multiple sustained states (attractors) for the same values of model parameters. Some of these states can represent normal activity while other, of oscillatory nature, may represent epileptic types of activity. We also showed that a simplified, analytical model can mimic this type of behavior and can be used instead of the realistic model for large scale simulations.

View Article and Find Full Text PDF

Rationale: The goal of this study is to evaluate the electroencephalographic (EEG) events, prior to clonic phases of epileptic motor seizures. Analyzing video sequences we were able to detect these special phases of motor seizures, by image features. This can be used for an early detection and alerting for these events.

View Article and Find Full Text PDF

High frequency oscillations (HFO) in stereo electroencephalographic (SEEG) signals have been recently the focus of attention as biomarkers that can have potential predictive power for the spatial location and possibly the timing of the onset of epileptic seizures. In this work we present a case study where we compare two quantitative paradigms for automated detection of biomarkers, one based on spontaneous SEEG recordings of HFOs and the other using activity induced by direct electrical stimulation (relative Phase Clustering Index algorithm). We compare the performance of these automated methods with manually detected HFO ripples by a trained EEG analyst and explore their potential diagnostic relevance.

View Article and Find Full Text PDF

Epilepsy is a pathological condition of the human central nervous system in which normal brain functions are impaired by unexpected transitions to states called seizures. We developed a lumped neuronal model that has the property of switching between two states as a result of intrinsic or extrinsic perturbations, such as noisy fluctuations. In one version of the model, seizure risk is controlled by a single connectivity parameter representing excitatory couplings between two model lumps.

View Article and Find Full Text PDF