Sustained activation of the Ca-release-activated Ca (CRAC) channel is pivotal for effector T cell responses. The mechanisms underlying this sustainability remain poorly understood. We find that plasma membrane localization of ORAI1, the pore subunit of CRAC channels, is limited in effector T cells, with a significant fraction trapped in intracellular vesicles.
View Article and Find Full Text PDFOrai1 is the pore subunit of Ca(2+) release-activated Ca(2+) (CRAC) channels that stimulate downstream signaling pathways crucial for T cell activation. CRAC channels are an attractive therapeutic target for alleviation of autoimmune diseases. Using high-throughput chemical library screening targeting Orai1, we identified a novel class of small molecules that inhibit CRAC channel activity.
View Article and Find Full Text PDFOrai1 and stromal interaction molecule (STIM)1 are critical components of Ca(2+) release-activated Ca(2+) (CRAC) channels. Orai1 is a pore subunit of CRAC channels, and STIM1 acts as an endoplasmic reticulum (ER) Ca(2+) sensor that detects store depletion. Upon store depletion after T-cell receptor stimulation, STIM1 translocates and coclusters with Orai1 at sites of close apposition of the plasma membrane (PM) and the ER membrane.
View Article and Find Full Text PDF