Publications by authors named "Marcus J Taylor"

We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells.

View Article and Find Full Text PDF

IL-1 receptor (IL-1R) signaling can activate thresholded invariant outputs and proportional outputs that scale with the amount of stimulation. Both responses require the Myddosome, a multiprotein complex. The Myddosome is required for polyubiquitin chain formation and NF-kB signaling.

View Article and Find Full Text PDF

The Myddosome is an oligomeric protein complex composed of MyD88 and members of IL-1 receptor-associated kinase (IRAK) family that transduce signals from Toll-like and IL-1 family receptors. The molecular dynamics of Myddosome formation and how the Myddosome organizes downstream signaling reactions provide insight into how TLR/IL-1Rs activate a decisive cellular response critical for the induction of inflammation. Supported lipid membranes formed on a continuous glass coverslip have been extensively used to study the molecular dynamics of receptor signaling.

View Article and Find Full Text PDF

A recurring feature of innate immune receptor signaling is the self-assembly of signaling proteins into oligomeric complexes. The Myddosome is an oligomeric complex that is required to transmit inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for how Myddosome proteins self-assemble and regulate intracellular signaling remains poorly understood.

View Article and Find Full Text PDF

A T cell mounts an immune response by measuring the binding strength of its T cell receptor (TCR) for peptide-loaded MHCs (pMHC) on an antigen-presenting cell. How T cells convert the lifetime of the extracellular TCR-pMHC interaction into an intracellular signal remains unknown. Here, we developed a synthetic signaling system in which the extracellular domains of the TCR and pMHC were replaced with short hybridizing strands of DNA.

View Article and Find Full Text PDF

Programmed cell death-1 (PD-1) is a coinhibitory receptor that suppresses T cell activation and is an important cancer immunotherapy target. Upon activation by its ligand PD-L1, PD-1 is thought to suppress signaling through the T cell receptor (TCR). By titrating PD-1 signaling in a biochemical reconstitution system, we demonstrate that the co-receptor CD28 is strongly preferred over the TCR as a target for dephosphorylation by PD-1-recruited Shp2 phosphatase.

View Article and Find Full Text PDF

Precise control over interfacial chemistry between nanoparticles and other materials remains a major challenge that limits broad application of nanotechnology in biology. To address this challenge, we used 'steric exclusion' to completely convert commercial quantum dots (QDs) into monovalent imaging probes by wrapping each QD with a functionalized oligonucleotide. We demonstrated the utility of these QDs as modular and nonperturbing imaging probes by tracking individual Notch receptors on live cells.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20-30 s preceding scission.

View Article and Find Full Text PDF

Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein-tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼ 2 s.

View Article and Find Full Text PDF

The AP-2 adaptor complex plays a key role in cargo recognition and clathrin-coated vesicle formation at the plasma membrane. To investigate the functions of individual binding sites and domains of the AP-2 complex in vivo, we have stably transfected HeLa cells with wild-type and mutant small interfering RNA-resistant alpha and mu2 subunits and then used siRNA knockdowns to deplete the endogenous proteins. Mutating the PtdIns(4,5)P2 binding site of alpha, the phosphorylation site of mu2, or the YXXPhi binding site of mu2 impairs AP-2 function, as assayed by transferrin uptake.

View Article and Find Full Text PDF

The AP-1 and AP-2 complexes are the most abundant adaptors in clathrin-coated vesicles (CCVs), but clathrin-mediated trafficking can still occur in the absence of any detectable AP-1 or AP-2. To find out whether adaptor abundance reflects cargo abundance, we used lectin pulldowns to identify the major membrane glycoproteins in CCVs from human placenta and rat liver. Both preparations contained three prominent high molecular-weight proteins: the cation-independent mannose 6-phosphate receptor (CIMPR), carboxypeptidase D (CPD) and low-density lipoprotein receptor-related protein 1 (LRP1).

View Article and Find Full Text PDF

Myosin VI plays a role in the maintenance of Golgi morphology and in exocytosis. In a yeast 2-hybrid screen we identified optineurin as a binding partner for myosin VI at the Golgi complex and confirmed this interaction in a range of protein interaction studies. Both proteins colocalize at the Golgi complex and in vesicles at the plasma membrane.

View Article and Find Full Text PDF

EpsinR is a clathrin-coated vesicle (CCV)-associated protein that binds to vti1b, suggesting that it may be a vti1b-selective adaptor. Depletion of epsinR to undetectable levels in HeLa cells using siRNA causes vti1b to redistribute from the perinuclear region to the cell periphery, but vti1a also redistributes in epsinR-depleted cells, and both vti isoforms redistribute in AP-1-depleted cells. As a more direct assay for epsinR function, we isolated CCVs from control and siRNA-treated cells and then looked for differences in cargo content.

View Article and Find Full Text PDF