Angew Chem Int Ed Engl
November 2020
Here, we report template-assisted assembly of emissive carbon quantum dot (CQD) microcrystals on organized cellulose nanocrystals templates at the liquid-air interface. This large-scale assembly is facilitated by the complementary amphiphilic character of CQDs and cellulose nanocrystals in the organized nematic phase. The resulting large microcrystals up to 200 μm across show unusually high emission that is not observed for limited CQDs aggregates.
View Article and Find Full Text PDFChiral fluorescent materials with fluorescent nanoparticles assembled into a chiral structure represent a grand challenge. Here, we report self-assembled emissive needle-like nanostructures through decorating cellulose nanocrystals (CNCs) with carbon quantum dots (CQDs). This assembly is facilitated by the heterogeneous amphiphilic interactions between natural and synthetic components.
View Article and Find Full Text PDFWhispering gallery mode resonators have been demonstrated to be a great way to achieve superior optical cavities with high quality factor and small mode volume. However, due to the high sensitivity of these modes to the properties of the resonator boundary, they are susceptible to parasitic splitting of clockwise and counterclockwise modes. In this work, we investigate the effect of implantation of an engineered notch into the boundary of a circular microdisk resonator fabricated from colloidal quantum dots, which are particularly sensitive to boundary defects.
View Article and Find Full Text PDFEvanescently coupled pairs of microdisk lasers have emerged as a useful platform for studying the non-Hermitian physics of exceptional points. It remains an open question how scalable and versatile such phenomena can be when carried over to other designs. Here we have studied the effect of gain/loss modulation in an evanescently coupled pair of microdisk optical resonators fabricated from solution-processed colloidal quantum dots.
View Article and Find Full Text PDFThis work demonstrates a facile and versatile method for generating low scattering cross-linked quantum dot (QD)-polymer composite films and patterned highly emissive structures with ultrahigh QD loading, minimal phase separation, and tunable mechanical properties. Uniform QD-polymer films are fabricated using thiol-ene chemistry, in which cross-linked polymer networks are rapidly produced in ambient conditions via fast UV polymerization in bulk to suppress QD aggregation. UV-controlled thiol-ene chemistry limits phase separation through producing highly QD loaded cross-linked composites with loadings above majority of those reported in the literature (<1%) and approaching 30%.
View Article and Find Full Text PDFAtrial myxomas are the most common benign tumors of the heart and are difficult to diagnose due to a wide variety of presenting symptoms. We present a patient with a five-year history of visual loss, vertigo, ataxia, tinnitus, and bone lesions that resolved after diagnosis and resection of an atrial myxoma. This case not only highlights an unusual presentation of atrial myxomas but also raises the question of whether atrial myxomas can produce paraneoplastic syndromes, including bone abnormalities.
View Article and Find Full Text PDFThe first synthesis of the naturally occurring benzoquinone dimer parvistemin A is reported. The key step is the late stage iron(III) mediated dimerization of a 1,2,4-trihydroxyarene to give the natural product in good yield, a phenol oxidative coupling that is believed to be biomimetic. The route proceeds in seven steps from an inexpensive commercially available acetophenone in 14% overall yield.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2010
The development of technologies that would lead toward the adoption of a hydrogen economy requires readily available, safe, and environmentally friendly access to hydrogen. This can be achieved using the aluminum-water reaction; however, the protective nature and stability of aluminum oxide is a clear detriment to its application. Here, we demonstrate the spontaneous generation of hydrogen gas from ordinary room-temperature tap water when combined with aluminum-oleic acid core-shell nanoparticles obtained via sonochemistry.
View Article and Find Full Text PDF