The short-time self-diffusion D of the globular model protein bovine serum albumin in aqueous (D2O) solutions has been measured comprehensively as a function of the protein and trivalent salt (YCl3) concentration, noted cp and cs, respectively. We observe that D follows a universal master curve D(cs,cp) = D(cs = 0,cp) g(cs/cp), where D(cs = 0,cp) is the diffusion coefficient in the absence of salt and g(cs/cp) is a scalar function solely depending on the ratio of the salt and protein concentration. This observation is consistent with a universal scaling of the bonding probability in a picture of cluster formation of patchy particles.
View Article and Find Full Text PDFThe dynamics of proteins in solution is a complex and hierarchical process, affected by the aqueous environment as well as temperature. We present a comprehensive study on nanosecond time and nanometer length scales below, at, and above the denaturation temperature Td. Our experimental data evidence dynamical processes in protein solutions on three distinct time scales.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2013
We use quasi-elastic neutron scattering spectroscopy to study the diffusive motion of water molecules at ambient temperature as a function of the solute molar fraction of the amino acid, proline. We validate molecular dynamics simulations against experimental quasielastic neutron scattering data and then use the simulations to reveal, and understand, a strong dependence of the translational self-diffusion coefficient of water on the distance to the amino acid molecule. An analysis based on the juxtaposition of water molecules in the simulation shows that the rigidity of proline imposes itself on the local water structure, which disrupts the hydrogen-bond network of water leading to an increase in the mean lifetime of hydrogen bonds.
View Article and Find Full Text PDFMacromolecular crowding in biological media is an essential factor for cellular function. The interplay of intermolecular interactions at multiple time and length scales governs a fine-tuned system of reaction and transport processes, including particularly protein diffusion as a limiting or driving factor. Using quasielastic neutron backscattering, we probe the protein self-diffusion in crowded aqueous solutions of bovine serum albumin on nanosecond time and nanometer length scales employing the same protein as crowding agent.
View Article and Find Full Text PDFWe report on a combined cold neutron backscattering and spin-echo study of the short-range and long-range nanosecond diffusion of the model globular protein bovine serum albumin (BSA) in aqueous solution as a function of protein concentration and NaCl salt concentration. Complementary small angle X-ray scattering data are used to obtain information on the correlations of the proteins in solution. Particular emphasis is put on the effect of crowding, i.
View Article and Find Full Text PDF