Publications by authors named "Marcus E Marvin"

Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses.

View Article and Find Full Text PDF

Telomere attrition is linked to cancer, diabetes, cardiovascular disease and aging. This is because telomere losses trigger further genomic modifications, culminating with loss of cell function and malignant transformation. However, factors regulating the transition from cells with short telomeres, to cells with profoundly altered genomes, are little understood.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S.

View Article and Find Full Text PDF

Background: During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion.

View Article and Find Full Text PDF

Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome.

View Article and Find Full Text PDF

The yKu protein of Saccharomyces cerevisiae is important for genome stability by repressing recombination involving telomeric sequences. The mechanism of this repression is not known, but silent heterochromatin such as HML, HMR, and telomeres are compartmentalized at the nuclear periphery and yKu is proposed to interact with these regions and to play a role in telomeric silencing and tethering. We have utilized ChIP on chip, quantitative PCR, and quantitative recombination assays to analyze yKu binding and its effect on genome stability in wild-type and mutant backgrounds.

View Article and Find Full Text PDF

The characterization of industrial yeast strains by examining their metabolic footprints (exometabolomes) was investigated and compared to genome-based discriminatory methods. A group of nine industrial brewing yeasts was studied by comparing their metabolic footprints, genetic fingerprints and comparative genomic hybridization profiles. Metabolic footprinting was carried out by both direct injection mass spectrometry (DIMS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), with data analysed by principal components analysis (PCA) and canonical variates analysis (CVA).

View Article and Find Full Text PDF

The ability of Candida albicans to acquire iron from the hostile environment of the host is known to be necessary for virulence and appears to be achieved using a similar system to that described for Saccharomyces cerevisiae. In S. cerevisiae, high-affinity iron uptake is dependent upon the acquisition of copper.

View Article and Find Full Text PDF

Copper and iron uptake in Saccharomyces cerevisiae are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in Candida albicans. The authors have identified a C.

View Article and Find Full Text PDF