Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies.
View Article and Find Full Text PDFIn nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.
View Article and Find Full Text PDFUnlabelled: The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing.
View Article and Find Full Text PDFNuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2.
View Article and Find Full Text PDFWe report a novel platform [native capillary zone electrophoresis-top-down mass spectrometry (nCZE-TDMS)] for the separation and characterization of whole nucleosomes, their histone subunits, and post-translational modifications (PTMs). As the repeating unit of chromatin, mononucleosomes (Nucs) are an ∼200 kDa complex of DNA and histone proteins involved in the regulation of key cellular processes central to human health and disease. Unraveling the covalent modification landscape of histones and their defined stoichiometries within Nucs helps to explain epigenetic regulatory mechanisms.
View Article and Find Full Text PDFCurrent proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the 'histone code'. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.
View Article and Find Full Text PDFBackground: Recent data propose a diagnostic and prognostic capacity for citrullinated histone H3 (H3Cit), a marker of neutrophil extracellular traps (NETs), in pathologic conditions such as cancer and thrombosis. However, current research is hampered by lack of standardized assays.
Objectives: We aimed to develop an assay to reliably quantify nucleosomal H3Cit in human plasma.
Molecular mechanisms underlying adaptive targeted therapy resistance in pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Here, we identify SETD5 as a major driver of PDAC resistance to MEK1/2 inhibition (MEKi). SETD5 is induced by MEKi resistance and its deletion restores refractory PDAC vulnerability to MEKi therapy in mouse models and patient-derived xenografts.
View Article and Find Full Text PDFEnzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis. They are also implicated in human developmental disorders and cancers, supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies.
View Article and Find Full Text PDFHistone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions).
View Article and Find Full Text PDFMitotic inheritance of DNA methylation patterns is facilitated by UHRF1, a DNA- and histone-binding E3 ubiquitin ligase that helps recruit the maintenance DNA methyltransferase DNMT1 to replicating chromatin. The DNA methylation maintenance function of UHRF1 is dependent on its ability to bind chromatin, where it facilitates monoubiquitination of histone H3 at lysines 18 and 23, a docking site for DNMT1. Because of technical limitations, this model of UHRF1-dependent DNA methylation inheritance has been constructed largely based on genetics and biochemical observations querying methylated DNA oligonucleotides, synthetic histone peptides, and heterogeneous chromatin extracted from cells.
View Article and Find Full Text PDFImproved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdR(P)) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA.
View Article and Find Full Text PDFNucleic Acid Ther
October 2012
Gemcitabine is a nucleoside analog that is currently the best available single-agent chemotherapeutic drug for pancreatic cancer. However, efficacy is limited by our inability to deliver sufficient active metabolite into cancer cells without toxic effects on normal tissues. Targeted delivery of gemcitabine into cancer cells could maximize effectiveness and concurrently minimize toxic side effects by reducing uptake into normal cells.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
There is a need for novel, effective, and cell- and gene-specific therapeutics for cancer. Modified oligonucleotides can be used to modulate specifically and potently the expression of several genes that are upregulated in breast and prostate cancer and have been found to be causal to the tumor phenotype. Synergistic downregulation of these genes may be a potent therapeutic intervention.
View Article and Find Full Text PDFThe alpha-P-borano modification, where one of the alpha-phosphate oxygens is replaced by borane, of chain terminating nucleoside triphosphates are currently being tested in cell culture and are showing promise as effective viral polymerase inhibitors. The goal of this project is to combine the alpha-P-borano and Nanogel drug delivery technology to increase the antiviral potency of chain terminating sugar and base modified purine nucleosides versus the Hepatitis C Viral RNA dependent RNA polymerase (HCV RdRp). Here we show the synthesis of Cordycepin and 2'-O-methyl alpha-P-borano triphosphate via a one-pot phosphorochloridite synthesis under mild conditions.
View Article and Find Full Text PDF