We report the first application of a rigid P2N3 pincer ligand in p-block chemistry by preparing its bismuth complex. We also report the first example of bismuth complexes featuring a flexible PNP pincer ligand, which shows phase-dependent structural dynamics. Highly electrophilic, albeit thermally unstable, Bi(iii) complexes of the PNP ligand were also prepared.
View Article and Find Full Text PDFThe use of pincer ligands to access non-VSEPR geometries at main-group centers is an emerging strategy for eliciting new stoichiometric and catalytic reactivity. As part of this effort, several different tridentate trianionic substituents have to date been employed at a range of different central elements, providing a patchwork dataset that precludes rigorous structure-function correlation. An analysis of periodic trends in structure (solid, solution, and computation), bonding, and reactivity based on systematic variation of the central element (P, As, Sb, or Bi) with retention of a single tridentate triamide substituent is reported herein.
View Article and Find Full Text PDFReaction of a tethered triamine ligand with Bi(NMe ) gives a Bi triamide, for which a Bi electronic structure is shown to be most appropriate. The T-shaped geometry at bismuth provides the first structural model for edge inversion in bismuthines and the only example of a planar geometry for pnictogen triamides. Analogous phosphorus compounds exhibit a distorted pyramidal geometry because of different Bi-N and P-N bond polarities.
View Article and Find Full Text PDF