Publications by authors named "Marcus A Johns"

Microplastics are an emerging anthropogenic pollutant risk with a significant body of research dedicated to understanding the implications further. To generate the databases required to characterize the impact of microplastics on our environment, and improve recovery and recycling of current plastic materials, we need rapid, in-line characterization that can distinguish individual polymer types. Here, autofluorescence spectroscopy was investigated as an alternative characterization method to the current leading techniques based on vibrational spectroscopy.

View Article and Find Full Text PDF

The ability to determine the physicochemical properties of nanoparticles, such as cellulose nanocrystals, in suspension is critically important to maximize their potential. Currently, various techniques are required to ascertain different properties, which results in a laborious analysis procedure. Here, autofluorescence arising from the cluster-triggered emission (CTE) photoluminescence mechanism is utilized as an analytical spectroscopic tool to determine multiple properties from one data acquisition sequence.

View Article and Find Full Text PDF

Polymeric nanoparticles have previously been used as substrates for cell attachment and proliferation due to their ability to mimic the extracellular matrix, but in general, they require surface chemical modifications to achieve this purpose. In this study, polymeric nanoparticles were developed and used without any matrix ligands functionalized on their surface to promote cell attachment and proliferation of human osteoblasts (MG63s). First, telechelic, reduced molar mass and diol-functionalized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was prepared by transesterification using ethylene glycol.

View Article and Find Full Text PDF

Locust bean/xanthan gum (LBG/XG) synergistic networks have previously been well studied, with evidence that junction zones between the two polymers result in hydrophobic domains. Here we report on the effect of both hydrophilic and hydrophobic cellulose nanocrystals (CNCs) on the rheological properties of the individual gums, the gum networks, and emulsion gels consisting of the gum network and corn oil. We also take advantage of differences in the autofluorescent spectra for each of the components to map their distribution within the gel and emulsion gel systems.

View Article and Find Full Text PDF

Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis.

View Article and Find Full Text PDF

Photoluminescence of cellulose, and other polysaccharides, has long been presumed to be due to contamination of the material by other autofluorescent compounds - such as lignin, or proteins. This is attributed to the lack of known fluorescent chemical groups present in the molecular structure of polysaccharides and the weak emission intensity when compared to typical fluorophores. However, recent research suggests that the observed luminescence may actually be due to transitions involving the n orbitals containing lone electron pairs present in oxyl groups, stabilised by the molecular forces between the polysaccharide chains.

View Article and Find Full Text PDF

Surface hydrophobization of cellulose nanomaterials has been used in the development of nanofiller-reinforced polymer composites and formulations based on Pickering emulsions. Despite the well-known effect of hydrophobic domains on self-assembly or association of water-soluble polymer amphiphiles, very few studies have addressed the behavior of hydrophobized cellulose nanomaterials in aqueous media. In this study, we investigate the properties of hydrophobized cellulose nanocrystals (CNCs) and their self-assembly and amphiphilic properties in suspensions and gels.

View Article and Find Full Text PDF

There is increased interest in the use of cellulose nanomaterials for the mechanical reinforcement of composites due to their high stiffness and strength. However, challenges remain in accurately determining their distribution within composite microstructures. We report the use of a range of techniques used to image aggregates of cellulose nanocrystals (CNCs) greater than 10 µm2 within a model thermoplastic polymer.

View Article and Find Full Text PDF

There is a growing appreciation that engineered biointerfaces can regulate cell behaviors, or functions. Most systems aim to mimic the cell-friendly extracellular matrix environment and incorporate protein ligands; however, the understanding of how a ligand-free system can achieve this is limited. Cell scaffold materials comprised of interfused chitosan-cellulose hydrogels promote cell attachment in ligand-free systems, and we demonstrate the role of cellulose molecular weight, MW, and chitosan content and MW in controlling material properties and thus regulating cell attachment.

View Article and Find Full Text PDF

Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant.

View Article and Find Full Text PDF

Polysaccharides, such as cellulose, are often processed by dissolution in solvent mixtures, e.g. an ionic liquid (IL) combined with a dipolar aprotic co-solvent (CS) that the polymer does not dissolve in.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how cellulose can support cell growth in tissue engineering without needing additional matrix ligands on its surface.
  • Bacterial cellulose sheets were modified to have either a positive or negative charge, with positive charge enhancing cell attachment by 70%, while negative charge showed low attachment levels.
  • The research indicates that only a small amount of positive modification is necessary to promote cell adhesion, making positively charged bacterial cellulose a promising material for tissue engineering applications.
View Article and Find Full Text PDF