SrMoO(4) doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr(1-x)Eu(x)MoO(4) powders, where x=0.01; 0.
View Article and Find Full Text PDFBaMoO(4):Eu (BEMO) powders were synthesized by the polymeric precursor method (PPM), heat treated at 800 degrees C for 2 h in a heating rate of 5 degrees C/min and characterized by powder X-ray diffraction patterns (XRD), Fourier Transform Infra-Red (FTIR) and Raman spectroscopy, besides room temperature Photoluminescence (PL) measurements. The emission spectra of BEMO samples under excitation of 394 nm present the characteristic Eu(3+) transitions. The relative intensities of the Eu(3+) emissions increase as the concentration of this ion increases from 0.
View Article and Find Full Text PDFIn this work Ba(0.99)Eu(0.01)MoO(4) (BEMO) powders were prepared by the first time by the Complex Polymerization Method.
View Article and Find Full Text PDF