Folia Microbiol (Praha)
October 2024
β-Glucans comprise a group of β-D-glucose polysaccharides (glucans) that occur naturally in the cell walls of bacteria, fungi, and cereals. Its degradation is catalyzed by β-glucanases, enzymes that catalyze the breakdown of β-glucan into cello-oligosaccharides and glucose. These enzymes are classified as endo-glucanases, exo-glucanases, and glucosidases according to their mechanism of action, being the lichenases (β-1,3;1,4-glucanases, EC 3.
View Article and Find Full Text PDFThe SnRK1, hexokinase, and TORC1 (TOR, LST8, RAPTOR) are three pivotal kinases at the core of sugar level sensing, significantly impacting plant metabolism and development. We retrieved and analyzed protein sequences of these three kinase pathways from seven sugarcane transcriptome and genome datasets, identifying protein domains, phylogenetic relationships, sequence ancestry, and in silico expression levels. Additionally, we predicted HXK subcellular localization and assessed its enzymatic activity in sugarcane leaves and culms along development in the field.
View Article and Find Full Text PDFThe analysis of the secretome allows us to identify the proteins, especially carbohydrate-active enzymes (CAZymes), secreted by different microorganisms cultivated under different conditions. The CAZymes are divided into five classes containing different protein families. is a thermophilic ascomycete, a source of many glycoside hydrolases and oxidative enzymes that aid in the breakdown of lignocellulosic materials.
View Article and Find Full Text PDFThe CO concentration has increased in the atmosphere due to fossil fuel consumption, deforestation, and land-use changes. Brazil represents one of the primary sources of food on the planet and is also the world's largest tropical rainforest, one of the hot spots of biodiversity in the world. In this work, a meta-analysis was conducted to compare several CO Brazilian experiments displaying the diversity of plant responses according to life habits, such as trees (79% natives and 21% cultivated) and herbs (33% natives and 67% cultivated).
View Article and Find Full Text PDFPhysiol Plant
November 2023
Elevated [CO ] (E[CO ]) mitigates agricultural losses of C4 plants under drought. Although several studies have described the molecular responses of the C4 plant species Sorghum bicolor during drought exposure, few have reported the combined effects of drought and E[CO ] (E[CO ]/D) on the roots. A previous study showed that, among plant organs, green prop roots (GPRs) under E[CO ]/D presented the second highest increase in biomass after leaves compared with ambient [CO ]/D.
View Article and Find Full Text PDFBiotechnol Lett
September 2023
Objectives: The aim of the present work was to perform the co-culture between Trichoderma longibrachiatum LMBC 172, a mesophilic fungus, with Thermothelomyces thermophilus LMBC 162, a thermophilic fungus, by submerged fermentation in a bioreactor.
Results: There was an increase in protein production, reaching the value of 35.60 ± 3.
Xylose isomerase catalyzes the isomerization of D-xylose to D-xylulose with promiscuous activity for other saccharides including D-glucose, D-allose, and L-arabinose. The xylose isomerase from the fungus Piromyces sp. E2 (PirE2_XI) is used to engineer xylose usage by the fermenting yeast Saccharomyces cerevisiae, but its biochemical characterization is poorly understood with divergent catalytic parameters reported.
View Article and Find Full Text PDFSugarcane is an important food and bioenergy crop, and although the residual biomass is potentially available for biorefinery and biofuels production the complex plant cell wall matrix requires pretreatment prior to enzymatic hydrolysis. Arabinoxylans require multiple enzymes for xylose backbone and saccharide side-branch hydrolysis to release xylooligosaccharides and pentoses. The effect of arabinoxylan structure on xylooligosaccharide release by combinations of up to five xylanolytic enzymes was studied using three arabinoxylan fractions extracted from sugarcane culms by sodium chlorite, DMSO and alkaline treatments.
View Article and Find Full Text PDFThe overexpression of the soybean GmEXPA1 gene reduces plant susceptibility to M. incognita by the increase of root lignification. Plant expansins are enzymes that act in a pH-dependent manner in the plant cell wall loosening and are associated with improved tolerance or resistance to abiotic or biotic stresses.
View Article and Find Full Text PDFThe overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions.
View Article and Find Full Text PDFTrehalose-6-phosphate (T6P) is an intermediate of trehalose biosynthesis that plays an essential role in plant metabolism and development. Here, we comprehensively analyzed sequences from enzymes of trehalose metabolism in sugarcane, one of the main crops used for bioenergy production. We identified protein domains, phylogeny, and in silico expression levels for all classes of enzymes.
View Article and Find Full Text PDFXyloglucan is ubiquitous in the cell walls of land plants and is also an essential storage polymer in seeds of many species. We studied the hydrolysis of the non-reducing end xylosyl residue of xyloglucan oligosaccharides (XGOs) by the Escherichia coli α-xylosidase (YicI). Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) and ion fragmentation analysis together with high performance anion exchange chromatography with pulsed amperometric detection revealed that YicI preferentially removes the xylosyl residue from the glycosyl residue of non-galactosylated oligosaccharides.
View Article and Find Full Text PDFMicroorganisms
March 2021
The lignocellulosic biomass comprises three main components: cellulose, hemicellulose, and lignin. Degradation and conversion of these three components are attractive to biotechnology. This study aimed to prospect fungal lignocellulolytic enzymes with potential industrial applications, produced through a temporal analysis using and seeds as carbon sources.
View Article and Find Full Text PDFEnviron Pollut
August 2020
Although air pollution decreased in some cities that shifted from an industrial to a service-based economy, and vehicular emission regulation became more restrictive, it is still a major risk factor for mortality worldwide. In central São Paulo, Brazil, air quality monitoring stations and tree-ring analyses revealed a decreasing trend in the concentrations of particulate matter and metals. Such trends, however, may not be observed in industrial districts located in the urban periphery, where the usual mobile sources may be combined with local stationary sources.
View Article and Find Full Text PDFFront Plant Sci
December 2020
Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks.
View Article and Find Full Text PDFDuckweeds are the smallest free-floating flowering aquatic plants. Their biotechnological applications include their use as food, bioenergy, and environmental sustainability, as they can help clean polluted water. The high growth capacity and their chemical properties make them suitable for human health applications.
View Article and Find Full Text PDFSci Total Environ
November 2020
The impacts of climate change on precipitation and the growing demand for water have increased the water risks worldwide. Water scarcity is one of the main challenges of the 21st century, and the assessment of water risks is only possible from spatially distributed records of historical climate and levels of water reservoirs. One potential method to assess water supply is the reconstruction of oxygen isotopes in rainfall.
View Article and Find Full Text PDFSmall RNAs comprise three families of noncoding regulatory RNAs that control gene expression by blocking mRNA translation or leading to mRNA cleavage. Such post-transcriptional negative regulation is relevant for both plant development and environmental adaptations. An important biotechnological application of miRNA identification is the discovery of regulators and effectors of cell wall degradation, which can improve/facilitate hydrolysis of cell wall polymers for second-generation bioethanol production.
View Article and Find Full Text PDFAppl Biochem Biotechnol
July 2020
The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-β-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues.
View Article and Find Full Text PDFMolecules
October 2019
Statistical evidence pointing to the very soft change in the ionic composition on the surface of the sugar cane bagasse is crucial to improve yields of sugars by hydrolytic saccharification. Removal of Li by pretreatments exposing -OH sites was the most important factor related to the increase of saccharification yields using enzyme cocktails. Steam Explosion and Microwave:HSO pretreatments produced unrelated structural changes, but similar ionic distribution patterns.
View Article and Find Full Text PDFThe study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g.
View Article and Find Full Text PDFBackground: Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction. They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones.
Results: The enzyme LPMO10A from the actinomycete was cloned and overexpressed in cells in the functional form with native N-terminal.
Climate change increasingly threatens plant growth and productivity. Soybean (Glycine max) is one of the most important crops in the world. Although its responses to increased atmospheric carbon dioxide concentration ([CO]) have been previously studied, root molecular responses to elevated [CO] (E[CO]) or the combination/interaction of E[CO] and water deficit remain unexamined.
View Article and Find Full Text PDFThe urban environment features poor air quality and harsher climate conditions that affect the life in the cities. Citizens are especially vulnerable to climate change, because heat island and impervious exacerbates extreme climate events. Urban trees are important tools for mitigation and adaptation of cities to climate change because they provide ecosystem services that increase while trees grow.
View Article and Find Full Text PDFThe concern about environmental pollution has risen in the last decades because of its effects on human's health. However, evaluation of the exposure to certain pollutants is currently hampered by the availability of past environmental data. Tree rings are an alternative to reconstruct environmental variability of pre-instrumental periods.
View Article and Find Full Text PDF