Publications by authors named "Marcos Roberto Vasconcelos Lanza"

In this work, the photo-, electro-, and photo-electro-oxidation of chloramphenicol was investigated. The photo-experiments were carried out with different irradiation sources (an ultraviolet and a simulated solar source) using self-doped titanium nanotubes (SDTNT), a very promising and innovative material that deserves further investigations in the degradation of different pollutants. The photo-electrooxidation (j = 15 mA cm) under simulated solar irradiation presented the best efficiency, with ca.

View Article and Find Full Text PDF

This paper explores the application of cross-linked cellulose beads as a sustainable and cost-effective support for the ZnO/SnO/carbon xerogel hybrid photocatalyst. The application of the developed photocatalytic beads, named CB-Cat, was directed at a simultaneous adsorption/photocatalysis process, which was carried out under simulated sunlight. The characterization of the CB-Cat indicated a good dispersion of the photocatalyst of choice throughout the cellulose matrix, confirming its incorporation into the cellulose beads.

View Article and Find Full Text PDF

In this work, different iron-based cathode materials were prepared using two different approaches: a novel one-step approach, which involved the incorporation of iron oxide with Printex L6 carbon/PTFE (PL6C/PTFE) on bare carbon felt (CF) and a two-step approach, where iron oxide is deposited onto CF previously modified with PL6C/PTFE. The results obtained from the physical characterization indicated that the presence of iron oxide homogeneously dispersed on the felt fibers with the CF 3-D network kept intact in the one-step approach; whereas the formation of iron oxide aggregates between the felt fibers for material obtained using the two-step approach. Among the iron oxide-based cathodes investigated, the iron-incorporated electrode exhibited the greatest efficiency in terms of the removal and mineralization of norfloxacin (NOR) under neutral pH (complete NOR removal in less than 30 min with around 50% mineralization after 90 min).

View Article and Find Full Text PDF

In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities.

View Article and Find Full Text PDF

This study upgrades the sustainability of environmental electrochemical technologies with a novel approach consisting of the in-situ cogeneration and use of two important oxidants, hydrogen peroxide (HO) and Caro's acid (HSO), manufactured with the same innovative cell. This reactor was equipped with a gas diffusion electrode (GDE) to generate cathodically HO, from oxygen reduction reaction, a boron doped diamond (BDD) electrode to obtain HSO, via anodic oxidation of dilute sulfuric acid, and a proton exchange membrane to separate the anodic and the cathodic compartment, preventing the scavenging effect of the interaction of oxidants. A special design of the inlet helps this cell to reach simultaneous efficiencies as high as 99% for HO formation and 19.

View Article and Find Full Text PDF

This paper proposes the study of a solar-based photocatalytic ozonation process for the degradation of salicylic acid (SA) using a novel S-scheme ZnO/CuO/CuO/carbon xerogel photocatalyst. The incorporation of CuO and CuO aims to enhance charge mobility through the formation of p-n heterojunctions with ZnO, whereas the carbon xerogel (XC) was selected due to its eco-friendly nature, capacity to stabilize S-scheme heterojunctions as a solid-state electron mediator, and ability to function as a reducing agent under high temperatures. The characterization of the composites demonstrates that the presence of the XC during the calcination step led to the reduction of a fraction of the CuO into CuO, forming a ternary semiconductor heterojunction system.

View Article and Find Full Text PDF

This work proposed new black-wattle tannin/kraft lignin HPO-activated carbon xerogels as sustainable and efficient adsorbents. The precursors were chosen based on their eco-friendly and cost-effective nature, aiming to achieve adsorbents with high adsorption capacities. Carbon xerogels were synthesized through polycondensation with formaldehyde and alkaline catalyst in a simple one-pot procedure.

View Article and Find Full Text PDF

Considering the ever-increasing need for efficient wastewater treatment, this study focused on the development of new kraft lignin-based carbon xerogel/zinc oxide (XCL/ZnO w) photocatalysts. The inclusion of the carbon xerogel is expected to cause an improvement in charge transfer throughout the photoactivation process, consequently enhancing its overall photocatalytic efficiency. Characterization shows that the materials developed are composed of both zinc oxide and carbon xerogel.

View Article and Find Full Text PDF

This paper reports the development of a novel photoelectrochemical (PEC) oxidation technique based on UV-C irradiation and boron-doped diamond (BDD) anode and its application for the effective removal of the commercial herbicide halosulfuron-methyl (HSM). The study evaluated the influence of the following key operating variables in the photoelectrochemical process: current density, pH, temperature, and initial HSM concentration. With regard to HSM degradation/mineralization, the application of high current densities was found to be more advantageous once it promoted a more rapid degradation and mineralization, with 96% of total organic carbon removal, though the process became more energy-demanding over time.

View Article and Find Full Text PDF