Publications by authors named "Marcos Quintela Baluja"

Article Synopsis
  • Antibiotic resistance genes (ARGs) in soil are spreading, but how they move through soil ecosystems is not well understood, particularly concerning the role of soil organisms like collembolans and predatory mites.
  • This study analyzed the impact of pesticide stress (zinc thiazole) on the gut microbiomes of collembolans, finding that ARGs significantly increased in these organisms and transferred to predatory mites through feeding.
  • Findings highlight that mobile genetic elements are key in transferring ARGs along the food chain, and there's a concerning connection between these genes and potential pathogens, emphasizing the importance of understanding antibiotic resistance dynamics in soil environments.
View Article and Find Full Text PDF

Prisons are high-risk settings for infectious disease transmission, due to their enclosed and semi-enclosed environments. The proximity between prisoners and staff, and the diversity of prisons reduces the effectiveness of non-pharmaceutical interventions, such as social distancing. Therefore, alternative health monitoring methods, such as wastewater-based epidemiology (WBE), are needed to track pathogens, including SARS-CoV-2.

View Article and Find Full Text PDF

Plasmids have been a concern in the dissemination and evolution of antibiotic resistance in the environment. In this study, we investigated the total pool of plasmids (plasmidome) and its derived antibiotic resistance genes (ARGs) in different compartments of urban water systems (UWSs) in three European countries representing different antibiotic usage regimes. We applied a direct plasmidome approach using wet-lab methods to enrich circular DNA in the samples, followed by shotgun sequencing and in silico contig circularisation.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) released into the environment are an emerging human and environmental health concern, including ARGs spread in wastewater treatment effluents. In low-to-middle income countries (LMICs), an alternate wastewater treatment option instead of conventional systems are low-energy, high-rate algal ponds (HRAP) that use microalgae-bacteria aggregates (MABA) for waste degradation. Here we studied the robustness of ARG removal in MABA-based pilot-scale outdoor systems for 140 days of continuous operation.

View Article and Find Full Text PDF

Enterococcus belongs to a group of microorganisms known as lactic acid bacteria (LAB), which constitute a broad heterogeneous group of generally food-grade microorganisms historically used in food preservation. Enterococci live as commensals of the gastrointestinal tract of warm-blooded animals, although they also are present in food of animal origin (milk, cheese, fermented sausages), vegetables, and plant materials because of their ability to survive heat treatments and adverse environmental conditions. The biotechnological traits of enterococci can be applied in the food industry; however, the emergence of enterococci as a cause of nosocomial infections makes their food status uncertain.

View Article and Find Full Text PDF

Raoultella ornithinolytica has become increasingly important in human diseases. Here, we report the nearly complete genome sequence of a multidrug-resistant strain, R. ornithinolytica MQB_Silv_108, which was isolated from the effluent from a domestic wastewater treatment plant in Spain.

View Article and Find Full Text PDF

Here, we report the draft genome sequences of two bacteriocin-producing Enterococcus faecium strains isolated from nonfermented animal foods in Spain. The genomes of the strains contain at least three different regions encoding bacteriocins, and the strains comply with the European Food Safety Authority guidance for use in animal nutrition.

View Article and Find Full Text PDF

Enterococcus species are Gram-positive bacteria that are normal gastrointestinal tract inhabitants that play a beneficial role in the dairy and meat industry. However, Enterococcus species are also the causative agents of health care-associated infections that can be found in dairy and fermented food products. Enterococcal infections are led by strains of Enterococcus faecalis and Enterococcus faecium, which are often resistant to antibiotics and biofilm formation.

View Article and Find Full Text PDF

Background: Understanding environmental microbiomes and antibiotic resistance (AR) is hindered by over reliance on relative abundance data from next-generation sequencing. Relative data limits our ability to quantify changes in microbiomes and resistomes over space and time because sequencing depth is not considered and makes data less suitable for Quantitative Microbial Risk Assessments (QMRA), critical in quantifying environmental AR exposure and transmission risks.

Results: Here we combine quantitative microbiome profiling (QMP; parallelization of amplicon sequencing and 16S rRNA qPCR to estimate cell counts) and absolute resistome profiling (based on high-throughput qPCR) to quantify AR along an anthropogenically impacted river.

View Article and Find Full Text PDF
Article Synopsis
  • The One Health approach needs better research on antimicrobial resistance (AMR) in water environments to understand its risks to human health.
  • A group of 21 experts developed the EMBRACE-WATERS checklist, which includes 21 key reporting items to improve clarity and consistency in AMR studies related to wastewater.
  • This checklist aims to enhance the quality of reporting in future research, ensuring clear communication among scientists from various fields without dictating research methods.
View Article and Find Full Text PDF

Wastewater based epidemiology (WBE) has become an important tool during the COVID-19 pandemic, however the relationship between SARS-CoV-2 RNA in wastewater treatment plant influent (WWTP) and cases in the community is not well-defined. We report here the development of a national WBE program across 28 WWTPs serving 50% of the population of Scotland, including large conurbations, as well as low-density rural and remote island communities. For each WWTP catchment area, we quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases.

View Article and Find Full Text PDF

Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.

View Article and Find Full Text PDF

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus prompted the development of National wastewater surveillance programmes.

View Article and Find Full Text PDF

Quorum sensing (QS), a microbial communication mechanism modulated by acyl homoserine lactone (AHL) molecules impacts biofilm formation in bioreactors. This study investigated the effects of temperature and immigration on AHL levels and biofouling in anaerobic membrane bioreactors. The hypothesis was that the immigrant microbial community would increase the AHL-mediated QS, thus stimulating biofouling and that low temperatures would exacerbate this.

View Article and Find Full Text PDF

A novel quorum quenching (QQ) strain, Acinetobacter guillouiae ST01, was isolated from a full-scale membrane bioreactor (MBR) and characterized for its QQ activities. Batch reactor studies at lab-scale showed that A. guillouiae ST01 exhibited higher QQ activity against acyl homoserine lactones (AHLs) with an oxo group compared to those without an oxo group.

View Article and Find Full Text PDF

Urban wastewater systems (UWSs) are a main receptacle of excreted antibiotic resistance genes (ARGs) and their host microorganisms. However, we lack integrated and quantitative observations of the occurrence of ARGs in the UWS to characterize the sources and identify processes that contribute to their fate. We sampled the UWSs from three medium-size cities in Denmark, Spain, and the United Kingdom and quantified 70 clinically important extended-spectrum β-lactamase and carbapenemase genes along with the mobile genetic elements and microbial communities.

View Article and Find Full Text PDF

The presence of SARS-CoV-2 in the feces of infected patients and wastewater has drawn attention, not only to the possibility of fecal-oral transmission but also to the use of wastewater as an epidemiological tool. The COVID-19 pandemic has highlighted problems in evaluating the epidemiological scope of the disease using classical surveillance approaches, due to a lack of diagnostic capacity, and their application to only a small proportion of the population. As in previous pandemics, statistics, particularly the proportion of the population infected, are believed to be widely underestimated.

View Article and Find Full Text PDF

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g.

View Article and Find Full Text PDF

The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators.

View Article and Find Full Text PDF

The current work investigated the discriminatory potential of MALDI-TOF MS fingerprinting towards most-relevant major (Streptococcus agalactiae, S. dysgalactiae, S. uberis) and minor (S.

View Article and Find Full Text PDF

A low-cost approach for enhancing mesophilic (37 °C) anaerobic digestion (AD) of organic waste using a low-temperature (37 °C) pretreatment with different mineral wastes (MW) was investigated. A higher and stable methane production rate, in comparison to MW-free controls, was achieved for 80 days at organic loading rates of 1-2 g VS/L·d, using a feed substrate pretreated with incinerator bottom ash (IBA). The boiler ash and cement-based waste pretreatments also produced high methane production rates but with some process instability.

View Article and Find Full Text PDF

Peri-urban aquacultures produce nutritious food in proximity to markets, but poor surface water quality in rapidly expanding megacities threatens their success in emerging economies. Our study compared, for a wide range of parameters, water quality downstream of Bangkok with aquaculture regulations and standards. For parameters not meeting those requirements, we sought to establish whether aquaculture practice or external factors were responsible.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are an effective barrier in the protection of human and environment health around the world, although WWTPs also are suggested to be selectors and-or reservoirs of antibiotic resistance genes (ARGs) before entering the environment. The dogma about WWTPs as "ARG selectors" presumes that biotreatment compartments (e.g.

View Article and Find Full Text PDF

Quantitative Structure Biodegradation Relationships (QSBRs) are a tool to predict the biodegradability of chemicals. The objective of this work was to generate reliable biodegradation data for mono-aromatic chemicals in order to evaluate and verify previously developed QSBRs models. A robust biodegradation test method was developed to estimate specific substrate utilization rates, which were used as a proxy for biodegradation rates of chemicals in pure culture.

View Article and Find Full Text PDF

Mineral wastes (MWs) from municipal solid waste incineration plants and construction demolition sites are rich in minerals, heavy metals and have acid neutralising capacity. This renders such MWs a promising source of bulk and trace elements to enhance and stabilize biogas production in anaerobic processes. However, finding a MW with typical heavy metal concentrations, which promotes anaerobic digestion (AD) without adverse effects on the microbial community of the reactor is of major importance.

View Article and Find Full Text PDF