Muscle overuse and its consequent muscle damage has no cure. Therefore, the present study aimed to investigate the regulatory role of tau-AuNPs on muscle recovery of muscle overuse model. The animals (Male Swiss mice) were randomly divided into four groups: Control (Ctr; n=6); tau-AuNPs (n=6); overuse (n=6); and overuse plus tau-AuNPs (n=6).
View Article and Find Full Text PDFMultiple sclerosis (MS) is a demyelinating chronic autoimmune inflammatory disease of the central nervous system (CNS). A large amount of proinflammatory cytokines is released in the CNS from the self-reactive T cells infiltrate, leading to the destruction of the myelin sheath and contributing to the development of MS. Several drugs have emerged in recent years to treat MS, and studies have shown that gold nanoparticles (GNPs) have anti-inflammatory properties in autoimmune diseases.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2017
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia in the aged brain. Even though its etiology is unknown, factors such as neuroinflammation, mitochondrial dysfunction, formation of reactive oxygen species (ROS), and impaired insulin signaling may play a role. We used a sporadic AD model in rats generated by intracerebroventricular-streptozotocin (i.
View Article and Find Full Text PDFWe report the effect of gold nanoparticles (AuNP) in an acute inflammation model induced by carrageenan (CG) and compared this effect with those induced by the antioxidant N-acetylcysteine (NAC) alone and by the synergistic effect of NAC and AuNP together. Male Wistar rats received saline or saline containing CG administered into the pleural cavity, and some rats also received NAC (20 mg/kg) subcutaneously and/or AuNP administered into the pleural cavity immediately after surgery. Four hours later, the rats were sacrificed and pleural exudates obtained for evaluation of cytokine levels and myeloperoxidase activities.
View Article and Find Full Text PDFThe aim of the study described here was to investigate the effects of pulsed ultrasound and gold nanoparticles (AuNPs) on behavioral, inflammatory and oxidative stress parameters in an experimental model of overuse. Wistar rats performed 21 d of exercise on a treadmill at different intensities and were exposed to ultrasound in the presence or absence of AuNPs. The overuse model promoted behavioral changes and increased creatine kinase, superoxide dismutase and glutathione peroxidase activity, as well as the levels of superoxide, nitrotyrosine, nitric oxide, thiobarbituric acid reactive substance, carbonyl, tumor necrosis factor α and interleukin-6.
View Article and Find Full Text PDFInflammation
February 2016
Tendinitis is a painful condition that occurs in tendons in response to repetitive use or direct trauma. The therapeutic approaches commonly employed to modulate inflammation have not achieved complete success in chronic cases of tendinitis. In this scenario, considering the anti-inflammatory properties of pulsed therapeutic ultrasound and gold nanoparticles (GNPs), this study assesses the possible therapeutic effects of phonophoresis in association with diclophenac diethylammonium and GNPs by measuring the inflammatory parameters interleukin 1β and tumor necrosis factor alpha in acute tendinous injury.
View Article and Find Full Text PDFThe aim of this study was to analyse the effects of microcurrent and gold nanoparticles on oxidative stress parameters and the mitochondrial respiratory chain in the healing of skin wounds. Thirty 60-day old male Wistar rats (250-300 g) were divided into five groups (N=6): Control; Burn wounds; Microcurrent (MIC); Gold nanoparticle gel (GNP gel) and Microcurrent+Gold nanoparticle gel (MIC+GNP gel). The microcurrent treatment was applied for five consecutive days at a dose of 300 μA.
View Article and Find Full Text PDFStudies have shown an exacerbated increase in proinflammatory markers during and after muscle injury. In this way, interventions that reduce inflammatory activation appear to be of great interest in muscle injury therapy. Thus, the preset study evaluated the effect of low-intensity pulsed ultrasound (LIPUS) and dimethylsulfoxide (DMSO) on the proinflammatory molecules in an animal model of traumatic muscle injury.
View Article and Find Full Text PDFIntroduction: Tendinitis affects a substantial number of people in several occupations involving repetitive work or direct trauma. Iontophoresis is a therapeutic alternative used in the treatment of injury during the inflammatory phase. In recent years, gold nanoparticles (GNP) have been studied due to their therapeutic anti-inflammatory capacity and as an alternative to the transport of several proteins.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2012
Background: Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound) with gold nanoparticles (GNP) on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury.
Materials And Methods: Animals were divided in nine groups: sham (uninjured muscle); muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP.
Malathion is an insecticide widely used in agriculture and in public health programs that when used indiscriminately in large amounts can cause environmental pollution and risk to human health. However, it is possible that during the metabolism of malathion, reactive oxygen species can be generated, and malathion may produce oxidative stress in intoxicated rats that can be responsible for alterations in DNA molecules related in some studies. As a result, the present study aimed to investigate the DNA damage of cerebral tissue and peripheral blood in rats after acute and chronic malathion exposure.
View Article and Find Full Text PDFIn this article, we report the effects of acute administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.
View Article and Find Full Text PDFCreatine kinase is a crucial enzyme for brain, heart and skeletal muscle energy homeostasis, and a decrease of its activity has been associated with cell death. Many biological properties have been attributed to ruthenium complexes. In this context, this work was performed in order to evaluate creatine kinase activity from rat brain, heart and skeletal muscle (quadriceps) after administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.
View Article and Find Full Text PDF