IEEE J Biomed Health Inform
February 2024
Currently, Human Activity Recognition (HAR) applications need a large volume of data to be able to generalize to new users and environments. However, the availability of labeled data is usually limited and the process of recording new data is costly and time-consuming. Synthetically increasing datasets using Generative Adversarial Networks (GANs) has been proposed, outperforming cropping, time-warping, and jittering techniques on raw signals.
View Article and Find Full Text PDFActivity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions.
View Article and Find Full Text PDF