Lianas (woody climbers) are crucial components of tropical forests and they have been increasingly recognized to have profound effects on tropical forest carbon dynamics. Despite their importance, lianas' representation in vegetation models remains limited, partly due to the complexity of liana-tree dynamics and the diversity in liana life history strategies. This paper provides a comprehensive review of advances and challenges for mechanistically representing lianas in forest ecosystem models and a proposed path towards effectively representing lianas in these models.
View Article and Find Full Text PDFUnderstanding the effects of intensification of Amazon basin hydrological cycling-manifest as increasingly frequent floods and droughts-on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest "tipping points". Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001-2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015-2016 El Niño drought and La Niña 2008-2009 wet events.
View Article and Find Full Text PDFBackground: Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites.
View Article and Find Full Text PDFLand and Earth system modeling is moving towards more explicit biophysical representations, requiring increasing variety of datasets for initialization and benchmarking. However, researchers often have difficulties in identifying and integrating non-standardized datasets from various sources. We aim towards a standardized database and one-stop distribution method of global datasets.
View Article and Find Full Text PDFLianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees.
View Article and Find Full Text PDFDroughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more.
View Article and Find Full Text PDFTropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia-along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%-30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%-15% of incoming solar radiation, compared to 0.
View Article and Find Full Text PDFVariation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LW ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient.
View Article and Find Full Text PDFJ Geophys Res Biogeosci
August 2020
Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.
View Article and Find Full Text PDFDeforestation is the primary driver of carbon losses in tropical forests, but it does not operate alone. Forest fragmentation, a resulting feature of the deforestation process, promotes indirect carbon losses induced by edge effect. This process is not implicitly considered by policies for reducing carbon emissions in the tropics.
View Article and Find Full Text PDFIn tropical rainforests, tree size and number density are influenced by disturbance history, soil, topography, climate, and biological factors that are difficult to predict without detailed and widespread forest inventory data. Here, we quantify tree size-frequency distributions over an old-growth wet tropical forest at the La Selva Biological Station in Costa Rica by using an individual tree crown (ITC) algorithm on airborne lidar measurements. The ITC provided tree height, crown area, the number of trees >10 m height and, predicted tree diameter, and aboveground biomass from field allometry.
View Article and Find Full Text PDFThere is mounting empirical evidence that lianas affect the carbon cycle of tropical forests. However, no single vegetation model takes into account this growth form, although such efforts could greatly improve the predictions of carbon dynamics in tropical forests. In this study, we incorporated a novel mechanistic representation of lianas in a dynamic global vegetation model (the Ecosystem Demography Model).
View Article and Find Full Text PDFThe impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition.
View Article and Find Full Text PDFAmazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016.
View Article and Find Full Text PDFNumerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints.
View Article and Find Full Text PDFWe present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate.
View Article and Find Full Text PDFForest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests.
View Article and Find Full Text PDFThere is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent.
View Article and Find Full Text PDFWe interpret a full year of high-frequency CO measurements from a tall tower in the U.S. Upper Midwest with a time-reversed Lagrangian Particle Dispersion Model (STILT LPDM) and an Eulerian chemical transport model (GEOS-Chem CTM) to develop top-down constraints on U.
View Article and Find Full Text PDFAgricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime.
View Article and Find Full Text PDF