Publications by authors named "Marcos Gonzalez-Gaitan"

The phenomenal diversity of neuronal types in the central nervous system is achieved in part by the asymmetric division of neural precursors. In zebrafish neural precursors, asymmetric dispatch of Sara endosomes (with its Notch signaling cargo) functions as fate determinant which mediates asymmetric division. Here, we found two distinct pools of neural precursors based on Sara endosome inheritance and spindle-microtubule enrichment.

View Article and Find Full Text PDF

The control of cell shape during cytokinesis requires a precise regulation of mechanical properties of the cell cortex. Only few studies have addressed the mechanisms underlying the robust production of unequal-sized daughters during asymmetric cell division. Here we report that unequal daughter-cell sizes resulting from asymmetric sensory organ precursor divisions in Drosophila are controlled by the relative amount of cortical branched Actin between the two cell poles.

View Article and Find Full Text PDF

Asymmetric cell division gives rise to two daughter cells that inherit different determinants, thereby acquiring different fates. Polarized trafficking of endosomes containing fate determinants recently emerged as an evolutionarily conserved feature of asymmetric cell division to enhance the robustness of asymmetric cell fate determination in flies, fish and mammals. In particular, polarized sorting of signalling endosomes by an asymmetric central spindle contributes to asymmetric cell division in Drosophila melanogaster.

View Article and Find Full Text PDF

The transforming growth factor-β (TGF-β)-type morphogens are conserved throughout the animal kingdom. TGF-β-type molecules form spatial concentration gradients whose length scales with the size of growing, developing organs. Scaling of these morphogens can also be mediated by death, adjusting the size of the tissue to the range of the gradient.

View Article and Find Full Text PDF

During development, morphogen gradients encode positional information to pattern morphological structures during organogenesis. Some gradients, like that of Dpp in the fly wing, remain proportional to the size of growing organs-that is, they scale. Gradient scaling keeps morphological patterns proportioned in organs of different sizes.

View Article and Find Full Text PDF

Morphogen gradients are fundamental to establish morphological patterns in developing tissues. During development, gradients scale to remain proportional to the size of growing organs. Scaling is a universal gear that adjusts patterns to size in living organisms, but its mechanisms remain unclear.

View Article and Find Full Text PDF

This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR, ER Flipper-TR, Lyso Flipper-TR, and Mito Flipper-TR. They are available from Spirochrome.

View Article and Find Full Text PDF

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway.

View Article and Find Full Text PDF

Capillary morphogenesis gene 2 (CMG2/ANTXR2) is a cell surface receptor for both collagen VI and anthrax toxin. Biallelic loss-of-function mutations in CMG2 lead to a severe condition, hyaline fibromatosis syndrome (HFS). We have here dissected a network of dynamic interactions between CMG2 and various actin interactors and regulators, describing a different behavior from other extracellular matrix receptors.

View Article and Find Full Text PDF

Secreted growth factors can act as morphogens that form spatial concentration gradients in developing organs, thereby controlling growth and patterning. For some morphogens, adaptation of the gradients to tissue size allows morphological patterns to remain proportioned as the organs grow. In the zebrafish pectoral fin, we found that BMP signaling forms a two-dimensional gradient.

View Article and Find Full Text PDF

In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery.

View Article and Find Full Text PDF

Cyclic oligochalcogenides are emerging as powerful tools to penetrate cells. With disulfide ring tension maximized, selenium chemistry had to be explored next to enhance speed and selectivity of dynamic covalent exchange on the way into the cytosol. We show that diseleno lipoic acid (DiSeL) delivers a variety of relevant substrates.

View Article and Find Full Text PDF

Cells and organelles are delimited by lipid bilayers in which high deformability is essential to many cell processes, including motility, endocytosis and cell division. Membrane tension is therefore a major regulator of the cell processes that remodel membranes, albeit one that is very hard to measure in vivo. Here we show that a planarizable push-pull fluorescent probe called FliptR (fluorescent lipid tension reporter) can monitor changes in membrane tension by changing its fluorescence lifetime as a function of the twist between its fluorescent groups.

View Article and Find Full Text PDF

Endocytosis is key in a number of cell events. In particular, its role during cell division has been a challenging question: while early studies examined whether endocytosis occurs during cell division, recent works show that, during division, cells do perform endocytosis actively. More importantly, during asymmetric cell division, endocytic pathways also control Notch signaling: endocytic vesicles regulate the presence, at the plasma membrane, of receptors and ligands at different levels between the two-daughter cells.

View Article and Find Full Text PDF

We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length.

View Article and Find Full Text PDF

Quantum dots (QDs) are extremely bright, photostable, nanometer particles broadly used to investigate single molecule dynamics in vitro. However, the use of QDs in vivo to investigate single molecule dynamics is impaired by the absence of an efficient way to chemically deliver them into the cytosol of cells. Indeed, current methods (using cell-penetrating peptides for instance) provide very low yields: QDs stay at the plasma membrane or are trapped in endosomes.

View Article and Find Full Text PDF

During asymmetric division, fate assignation in daughter cells is mediated by the partition of determinants from the mother. In the fly sensory organ precursor cell, Notch signalling partitions into the pIIa daughter. Notch and its ligand Delta are endocytosed into Sara endosomes in the mother cell and they are first targeted to the central spindle, where they get distributed asymmetrically to finally be dispatched to pIIa.

View Article and Find Full Text PDF

Crumbs (Crb) is a key regulator of epithelial polarity and fulfils a plethora of other functions, such as growth regulation, morphogenesis of photoreceptor cells and prevention of retinal degeneration. This raises the question how a single gene regulates such diverse functions, which in mammals are controlled by three different paralogs. Here, we show that in different Crb protein isoforms are differentially expressed as a result of alternative splicing.

View Article and Find Full Text PDF

Systematic headgroup engineering yields planarizable push-pull flipper probes that are ready for use in biology - stable, accessible, modifiable -, and affords non-trivial insights into chalcogen-bond mediated mechanophore degradation and fluorescence enhancement.

View Article and Find Full Text PDF

Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex.

View Article and Find Full Text PDF

Because signaling mediated by the transcription factor nuclear factor κB (NF-κB) is initiated by ligands and receptors that can undergo internalization, we investigated how endocytic trafficking regulated this key physiological pathway. We depleted all of the ESCRT (endosomal sorting complexes required for transport) subunits, which mediate receptor trafficking and degradation, and found that the components Tsg101, Vps28, UBAP1, and CHMP4B were essential to restrict constitutive NF-κB signaling in human embryonic kidney 293 cells. In the absence of exogenous cytokines, depletion of these proteins led to the activation of both canonical and noncanonical NF-κB signaling, as well as the induction of NF-κB-dependent transcriptional responses in cultured human cells, zebrafish embryos, and fat bodies in flies.

View Article and Find Full Text PDF

During asymmetric division, fate determinants at the cell cortex segregate unequally into the two daughter cells. It has recently been shown that Sara (Smad anchor for receptor activation) signalling endosomes in the cytoplasm also segregate asymmetrically during asymmetric division. Biased dispatch of Sara endosomes mediates asymmetric Notch/Delta signalling during the asymmetric division of sensory organ precursors in Drosophila.

View Article and Find Full Text PDF

Cell-permeable DNA stains are popular markers in live-cell imaging. Currently used DNA stains for live-cell imaging are either toxic, require illumination with blue light or are not compatible with super-resolution microscopy, thereby limiting their utility. Here we describe a far-red DNA stain, SiR-Hoechst, which displays minimal toxicity, is applicable in different cell types and tissues, and is compatible with super-resolution microscopy.

View Article and Find Full Text PDF

Cell biologists now have tools and knowledge to generate useful quantitative data. But how can we make sense of these data, and are we measuring the correct parameters? Moreover, how can we test hypotheses quantitatively? To answer these questions, the theory of physics is required and is essential to the future of quantitative cell biology.

View Article and Find Full Text PDF